Forward Calorimeter upgrade in ALICE

Tatsuya Chujo Univ. of Tsukuba

Sep. 13, 2016 ALICE Calo meeting, NRC Kurchatov Institute

筑波大学 University of Tsukuba

Outline

- **1. Physics motivations**
- 2. Forward Calorimeter Project in ALICE
 - Detector design, organization
 - MAPS detector
 - PAD detector
- 3. Schedule
- 4. Summary

Gluon Density in nucleon/ nuclear at high energy

At small x and small Q², the parton density will become large by non-linear effects due to gluon fusion Gluon density saturate, called; Gluon Saturation, or Color Glass Condensate (CGC)

3 quarks

CGC

Color Glass Condensate (CGC)

- Saturated gluon state by the quantum fluctuation
 Universal picture at high energy nucleus and nucleon
- ③ But no clear experimental evidence for the creation of CGC
- To find/ test CGC by experiment...
 - (1) more forward
 - (2) Higher energy
 - (3) proton < nucleus
 - (4) cleanness: h < gamma

$$x_{\min} = \frac{2p_T}{\sqrt{s}} \exp(-\eta),$$

- 1. High particle flux at forward region
- 2. Difficult to measure direct photon at forward

But...

Measurement is possible by Si technics (CMOS-MAPS, PAD) !

Signal of CGC: R_{pA}

Two scenarios for forward γ production in p+A at LHC:

- Normal nuclear effects linear evolution, shadowing
- Saturation/CGC running coupling BK evolution

$$R_{pA} \equiv rac{d^3N/dp_T^3(pA)}{\langle N_{coll}
angle \cdot d^3N/dp_T^3(pp)},$$

- Strong suppression in direct γ R_{pA}.
- Signals expected at forward η , low-intermediate p_T .

QGP thermalization mechanism

- Why so rapidly thermalized (t=0.6 fm/c)?
 - Instability of strong color field ? \rightarrow need to determine

the initial condition clearly.

Find the clear evidence for CGC formation as an initial condition (or exclude it).

nine al QGP rapid thermalization?

Long range correlations in AA and pA ("Ridge")

- long range $\Delta \eta$ correlations (ridge) at RHIC and LHC.
- Origin is still unknown.
- by CGC (initial condition) or others?

photons vs. charm: D⁰ meson (LHCb)

R_{pPb} for **D**⁰ (LHCb)

Isolated photons vs. hadrons

Isolated direct photons can provide strong constraints on the gluon PDFs

- LO dominant process: quarkgluon Compton.
- Quark-anti-quark annihilation contributing mostly at large x.
- NLO: At LHC, the majority of prompt photons are produced in the fragmentation process
- Fragmentation photon can be largely suppressed by the isolation cut.
- →quark-gluon Compton process dominant, more direct access to the gluon PDFs and saturation physics

by T. Peitzmann 10

Uniqueness of this measurement

High density gluon matter ↔ Hot Quark Matter A. Rezaeian, PLB 718, 1058

1 Evidence for CGC

- direct photon = most clean signal for CGC
- Forward direct photon: $R_{pA} \rightarrow CGC$ or not.

2 Nature of CGC

• Direct photon RpA: system, multiplicity, y & p_T dep.

 \rightarrow characterize CGC size, structure, onset. **3CGC and QGP thermalization mechanism**

• Size of CGC (direct photon) and QGP temperature ,

expansion velocity, fluctuation.

forward photon /hadron vs. mid. photon / hadron

correlation between CGC size and

QGP thermalization (e-by-e)

 \rightarrow Mechanism of rapid thermalization

④ Creation of new research field

- ^rstrong field」: QCD color (gluon) field vs. QED field (Neutron star)
- ^rforward」: High energy cosmic rays

ALICE FoCal Project

- p+Pb: looking for CGC effects at low x
 - Direct photons
 - pi0
 - di-hadron correlations
- p+p: forward particle production
 - Direct photons
 - pi0
 - di-hadron correlations
- Pb+Pb: medium density at fwd rapidity
 - pi0 at 4 < eta < 4.5
 - · Handle on longitudinal evolution of medium
 - Provide light meson baseline for J/psi, muon suppression
 - di-hadron correlations (TBC)

plus other capabilities: quarkonia, jets, mostly in p, p+Pb

3.2 < η < 5.3

Kinematic reach by FoCal

x-Q ranges for photons and DIS

Forward measurements at LHC access unique range in x, Q²

Remark hadronic probes

Projected uncertainty for direct γ R_{pPb}

FoCal can measure direct photons in this range

Cleanest probe of PDFs

p0, eta, omega as well....

FoCal-E prototypes

- **Si/W** sandwich calorimeter layer structure:
 - W absorbers (thickness 1X₀)+ Si sensors
- Longitudinal segmentation:
 - 4 segments low granularity (LG)
 - 2 segments high granularity (HG)

LG segments

- 4 (or 5) layers
- Si-pad with analog readout
- cell size 1 x 1 cm²
- longitudinally summed

• HG segments

- single layer
- CMOS-pixel (MAPS*)
- pixel size $\approx 25~x~25~\mu m^2$
- digitally summed in 1mm² cells

FoCal project (Institutes)

Short Name	Full Name	Representative
Amsterdam	Nikhef, Amsterdam, Netherlands	M. van Leeuwen
BARC	Bhaba Atomic Research Centre, Mumbai, India	V.B. Chandratre
Bergen	University of Bergen, Bergen, Norway	D. Roehrich
Bose	Bose Institute, Kolkata, India	S. Das
Detroit	Wayne State University, Detroit, USA	J. Putschke
Hiroshima	Hiroshima University, Hiroshima, Japan	T. Sugitate
IITB	Indian Institute of Technology Bombay, Mumbai, India	R. Varma
Indore	Indian Institute of Technology Bombay, Indore, India	R. Sahoo
Jammu	Jammu University, Jammu, India	A. Bhasin
Jyväskylä	University of Jyväskylä, Jyväskylä, Finland	J. Rak
Knoxville	University of Tennessee, Knoxville, USA	K. Read
Nagasaki	Nagasaki Inst. of Applied Science, Nagasaki, Japan	K. Oyama
Nara§	Nara Women's University, Nara, Japan	M. Shimomura
Oak Ridge	Oak Ridge National Laboratory (ORNL), Oak Ridge, USA	T. Cormier
Prague	Czech Technical University of Prague, Prague, Czech Republic	V. Petracek
Sao Paulo	Universidade de Sao Paulo (USP), Sao Paulo, Brazil	M. Munhoz
Tokyo	Center of Nuclear Study (CNS), Tokyo, Japan	T. Gunji
Tsukuba	University of Tsukuba	T. Chujo
Tsukuba Tech	Tsukuba University of Technology	M. Inaba
Utrecht	Utrecht University, Utrecht, Netherlands	T. Peitzmann
VECC	Variable Energy Cyclotron Centre, Kolkata, India	T. Nayak

FoCal project (components)

Project Component	Participating Institution(s)				
FoCal-E					
HGL sensors	Amsterdam, Bergen, Prague, Utrecht				
HGL module	Amsterdam, Utrecht				
cooling	Amsterdam, Prague, Utrecht				
HGL readout	Amsterdam, Bergen, Utrecht				
LGL sensors	Detroit, Knoxville, Kolkata, Mumbai,				
	Oak Ridge, Prague, Tokyo				
LGL FEE/TRG	Detroit, Knoxville, Kolkata, Mumbai,				
	Oak Ridge, São Paolo, Tokyo				
LGL modules	Detroit, Knoxville, Kolkata, Mumbai,				
	Oak Ridge, Prague, Tokyo				
slow control	Detroit, Kolkata, Mumbai, Prague, Tokyo				
integration	Amsterdam, Detroit, Knoxville, Livermore,				
	Oak Ridge, Prague, Tokyo, Utrecht				
FoCal-H					
mechanics	Detroit, Knoxville, Livermore, Oak Ridge				
photosensors	Detroit, Knoxville, Oak Ridge				
FEE/TRG	Detroit, Knoxville, Oak Ridge				
slow control	Detroit, Prague				
integration	Detroit, Knoxville, Livermore, Oak Ridge, Prague				

High Granularity (HG) Prototype, MAPS

MAPS prototype

- 4x4 cm² cross section, 28 X₀ depth
- 24 layers: W absorber + 4 MAPS each
- MIMOSA PHASE 2 chip (IPHC Strasbourg)
 - 30 µm pixels
 - 640 µs integration time (needs upgrade – too slow for experiment)
- 39 M pixels total

-0.5 0.0

1.0 x (cm)

• Test with beams at DESY, CERN PS, SPS

Event Display: *measurement (DESY) of pile-up of two 5.4 GeV electrons, demonstrates two-shower separation capabilities*

High Granularity (HG) Prototype, MAPS

Shower profile

Energy resolution

Linearity

Low Granularity (LG) Prototype, PAD (India)

Low Granularity (LG) Prototype, PAD (JP, US)

FoCal PAD proto type, 1 segment (ORNL, Tsukuba, CNS-Tokyo) 20

FoCal test bench @ U. Tsukuba

- SRS readout system + APV 25 hybrid readout system.
- Same system has been used for the PS/SPS test beam.

ALICE Calo Meeting, Moscow, Sep. 13, 2016

Test beam setup @ PS (same for SPS) in 2015

Linearity and energy resolution (2015 beam test, Tsukuba)

 Good linearity within ~3% from PS to SPS energies.

- Stochastic term: close to the expected value.
- Constant term: < 10%

R&D for fast readout: RD51 (VMM2/3)

- R&D and test for VMM2 and VMM3 hybrid boards with SRS + DATE (ALICE DAQ) system.
- R&D of combined design; on-board VMM2/3 on FoCal summing board, and modification for FoCal needs (dynamic range & trigger capability)

		D.	ATEDAQ_TEST_D	AQ::DAQ_T	EST_CONTROL			
Eile Viev	v <u>O</u> ptions	₩indows				Status update		
	a 1		HI runni RC runni	DAQ - F DAQ - F ng on srsc ng on srsc	2_TEST un Control Lagpc with PID 10233 Lagpc with PID 10042			
Disconn	ected	2	Connected	(])3	Ready to start	Data Takir		
Configuration Run Parameters					Start processes 4	Start 5		
DefineEDM				EDM	Stop			
Show		_	Show		HLT: mode A	V Abort		
					LDC: Local Recording OFF	v [
					GDC: eventBuilding OFF	v		
RUN NUME	ER : 998	Run (Control Status :	STARTED				
Trace	Thu 14 17:4	15:09 (HI) Cu	rrent RC options loade	from : DATE	_CONFIG			
Clear	Thu 14 17:4 Thu 14 17:4	Thu 14 17:45:09 (H1) Start processes time : 4 seconds Thu 14 17:45:05 (BC) Detector LDCs: aloneldc						
Debug	Thu 14 17:4	15:05 (RC) R	an storting with					
Pause	Thu 14 17:45:05 (RC) Starting run 998 Thu 14 17:45:05 (RC) Get and undate run number from database							
Bigger	Thu 14 17:4	15:05 (RC) No	ew Run options loaded f	rom : Databa	e DATE_CONFIG			
Smaller	The 14 175	6305 (RC) 01			NTPNI			

ALICE DATE for VMM (developed by RD51)

ALICE Calo Meeting, Moscow, Sep. 13, 2016

2016 SPS test beam (Sep. 7-12 (14))

2016 SPS test beam (Sep. 7-12)

- New summing board (by M. Inaba) installed for all 4 LGLs, tested with beams (<140 GeV/c).
- Wider dynamic range and
- Also the data matching between MAPS and PAD (LGL) is possible by the trigger bits recording in the both data stream

Electron signals at 130 GeV/c (LGL2)

Si sensor R&D

- Nara Women's Univ. + other Japanese institutes.

- Basic study of Hamamatsu Si-PD, bonding test

Visit Kyushu Univ. "CALICE" group (Sep. 20)

New VMM2/3 R&D in Tsukuba

will move the VMM station at RD51 Lab. to Tsukuba after the beam test.

Physics discussion with theorists

- First round (Aug. 26, 2016)

Tentative schedule

Summary

- At forward region at LHC: unexplored physics regime, there are rich physics programs:
 - CGC, nature of CGC (size & structure) if exist
 - thermalization mechanism and strong field.
 - long range eta correlations (ridge origin)
- Extensive R&D efforts, well defined target.
- Lol has been already prepared.
 - Awaiting the project approval by the collaboration.
- We warmly welcome the Russian participation in the FoCal project !