

Latest results of charged hadron flow measurements in CuAu collisions at RHIC-PHENIX

Hiroshi Nakagomi for the PHENIX collaboration

Univ. of Tsukuba RIKEN

Azimuthal anisotropic flow

Higher order flow harmonics

PRL 107. 252301

Event-by-event initial participant fluctuation can lead to triangular particle production anisotropy $v_{3.}$ v_3 is expected to further constrains initial condition and viscosity

Cu+Au collisions

Asymmetric initial condition provides

- Different left/right pressure gradient, particle production....
- Longitudinally, above characteristics could be different in Au-going/Cu-going

vn measurements in CuAu collisions provide additional insight into the mechanism

PHENIX detectors

2nd 3rd Participant Event Plane -Beam Beam counter(BBC) Spectator Plane -Shower Max Detector(SMD)

Charged particle Tracking -Drift Chamber(DC) ($|\eta| < 0.35$) -Pad Chamber(PC) ($|\eta| < 0.35$) -Electro magnetic calorimeter(EMC) ($|\eta| < 0.35$) -Forward Vertex Detector(FVTX) ($1 < |\eta| < 3$)

Hadron identification -Time of flight(TOF) (|η|<0.35)

Charged hadron vn in CuAu

-p⊤ dependence of v₂, v₃
System size dependence
-p⊤ and eta dependence of v₁

System size dependence of v₂

v₂ for different systems has similar centrality and pT dependence v₂ in CuAu is always between those in AuAu and CuCu

Scale v2 with $\epsilon_2 N_{part}^{(1/3)}$

System size dependence of v₃

v₃ for different systems has weak centrality dependence v₃ in CuAu is always bigger than those in AuAu

Scale v_3 with $\varepsilon_3 N_{part}^{(1/3)}$

Empirical $\epsilon_3 N_{part}^{(1/3)}$ scaling is performed -v₃ is scaled with $\epsilon_3 N_{part}^{(1/3)}$ -N_{part}^(1/3) is proportional to length scale $\epsilon_3 N_{part}^{(1/3)}$ scaling works well in v₃!

v₁ measurement

 $v_1 = (\cos(\phi - \Psi_1))$

b) Transverse Plane

The direction of Ψ_1 is defined in Cu side spectator ->v₁>0 : more particle are emitted to Cu ->v₁<0 : more particle are emitted to Au -Measurement of v₁ w.r.t Ψ_1 using Au spectator and flipping its sign

Charged hadron v1

arxiv:1509.07784

Sizable v1 at mid-rapidity is observed for 10-50% High pt particle are emitted to Au side -Magnitude decreases from central to more peripheral events -In peripheral events, Left/Right path length becomes similar

Rapidity dependence of v₁

Cu

13

low p_T

Traditional v₁ in CuAu is positive at mid-rapidty ? - more low p_T particle emitted to Cu side ?

Identified hadron vn

Identified particle v2 in CuAu

Mass ordering at low p_T for v_2 for all centralities Baryon and meson splitting at mid- p_T is seen

Identified particle v₃, v₁ in CuAu

arxiv:1509.07784

PID V₃

-Same particle dependence of v_3 is seen as seen in v_2 PID v_1

-At low pt, mass ordering is not observed.

- -Mass ordering is seen for v_1 at 1<pT<2.5GeV
- -At high pt, baryon and meson splitting is not observed

Comparison to theory

-Event-by-Event Hydro

MC-Glauber E-by-E hydro v₂, v₃

For both centrality, both values of η /s agree with data

MC-Glauber E-by-E hydro v1(pt)

In hydro calculation, -More low pT , particles are emitted to Cu side -More high pT, particles are emitted to Au side Theory calculation shows qualitative agreement.

MC-Glauber E-by-E hydro v1(eta)

Comparison to theory for different centrality class Hydro calculation doesn't show a sign change of v1 -In |eta|<4, sign of v1 is not changed Magnitude of theory calculation is much smaller than those of experimental data

Summary

Charged Hadron v_n

-v₂, v₃ show same p_T and centrality dependence as seen symmetric collisions

-Sizable v_1 is measured at mid-rapidity

-Fluctuation v_1 is observed at RHIC

System size dependence of v₂, v₃

- CuAu v_2 , v_3 are scaled with $\mathcal{E}_n N_{\text{part}}^{(1/3)}$

Identified Hadron vn

-Mass ordering and Baryon and Meson splitting are seen in $v_2,\,v_3$

- In mid-p_T, Mass ordering is seen in v₁, Not observe Baryon and Meson splitting in v₁

E-by-E hydro comparison -reproduces pt dependence of v₂, v₃ -qualitatively reproduces pt dependence of v₁, but fails to explain η dependence of v₁

Back Up

Charged pion v2, v3 in AuAu

Flow in symmetric collisions system

Relative Heavy Ion Collider(RHIC)

PHMENIX

Comparison to AMPT v2

AMPT with 3mb reproduce v2 -In 0-30%, up to 2GeV -In 30-60%, up to 1GeV

Comparison to AMPT v3

AMPT with 3mb reproduce v3 -In 0-30%, up to 2GeV

Rapidity dependence of v₁

Charged hadron v₂

Similar p_T and centrality dependence of v_2 as seen in symmetric collisions

 Strong centrality dependence, magnitude increase from central to peripheral

Charged hadron v3

Similar pT and centrality dependence of v3 as seen in symmetric collisions

- Weak centrality dependence, magnitude slightly increase from central to peripheral

v₁ Even, Odd Components in PbPb

 $\checkmark v_1(\text{even} + \text{odd}) = v_1(\text{even}) + v_1(\text{odd})$ is observed in PbPb 2.75[TeV] - v(even): v1(η) = v1(- η)

- v1 (odd) : v1 (η) = -v1 (- η)
- The source of even component is expected from spectator fluctuation

$$v_1^{\text{odd}}\{\Psi_{\text{SP}}\} = \left[v_1\{\Psi_{\text{SP}}^p\} + v_1\{\Psi_{\text{SP}}^t\}\right]/2$$

March 2nd 2016 WWND H.Nakagomi v_1^{even}

$${}^{n}{\{\Psi_{SP}\}} = \left[v_{1}{\{\Psi_{SP}^{p}\}} - v_{1}{\{\Psi_{SP}^{t}\}}\right]/2.$$

v1 even $v_1(p_{\perp})\{RP\} = \langle \cos(\phi_i - \Psi_{RP}) \rangle$ v1 odd $v_1(p_{\perp})\{RP\}(odd) = \langle \operatorname{sgn}(\eta_{PS})\cos(\phi_i - \Psi_{RP}) \rangle$

$\Delta \phi \sim \Delta \Psi' \sim \Delta \Psi': v1(SP fluctuation) > 0 or < 0$ $\Delta \phi \neq \Delta \Psi \neq \Delta \Psi': no correlation v1(SP fluctuation)=0$