# Front-end Electronics of FoCal-E PAD detectors

1 June, 2016.

### Motoi INABA



# Background

As one of the ALICE detector upgrade plans, we are going on testing the FoCal-E PAD detector prototype and developing some peripheral electronics in 2014 and 2015.

#### For example,

- The SRS crate with a power unit,
- Temperature monitors, (Automatic shutdown)
- Isolated regulated LV power circuits,
- Isolated HV generators,
- Trigger circuits, etc.







# FoCal-E PAD module (prototype)

A FoCal-E PAD detector is the Si-W calorimeter. One module has 4 pairs of tungsten tiles (t = 3.5 mm) and Si-PD sensors (t = 0.5 mm).



# FoCal-E PAD module (prototype)

Signals of 4 Si-PDs are summed and amplified. And, it is given as two single-end signals with attenuation factors of 1/1 and 1/16.





## Readout system

In order to readout waveforms of 64 analog signals per module, we used ORNL summing boards and SRS DAQ system with APV25 hybrid boards so far. Signals of 4 Si-PD with the same channel ID on different layers are 4 layers x 64 channels summed at the first stage Si-PD Si-PD Si-PD Si-PD of the ORNL summing board. x 64 8 HDMI ports (x2) A summing board 64 channels A trigger signal ADC card FEC card APV25 hybrid Vertex-6 16 ADCs DAQ **FPGA HDMI** (mmDAQ) LAN Low voltage cable 12-bit cable PC 40MS/s Power High voltage SRS crate FoCal-E PAD modules (x 4)

# FoCal-E PAD module prototype





## 4 FoCal-E PAD modules



# FoCal-E prototype at CERN PS complex



# Signals (One trigger event data)



# Signals (Multiple trigger events data)



Positive signals (0.5 GeV/c)



Positive signals (5.0 GeV/c)



Negative signals (0.5 GeV/c)



Negative signals (5.0 GeV/c)

# Wider dynamic range and better S/N

In order to measure larger signals under the higher energy, wider dynamic range is required.

It would need triple attenuation factors such as 1/1, 1/10 and 1/100 if APV25 hybrid boards are used for taking 500 Gev/c data.

In order to measure smaller signals, it is necessary to reduce the noise level on signal lines. It would be strongly related with the energy resolution of the FoCal-E PADs.

S/N was already improved to a certain extent using new isolated LV / HV circuits, new frames with the isolation coating (by Universiteit Utrecht) and better ground lines. However, we should make another attempt.

Through the advanced circuit simulation, some weak points were found in a current FEE design.

## **New frames for FoCal-E PADs**

Much noise came from the ground frame to Tungsten tiles of the FoCal-E PAD modules that was connected with Cathode of Si-PD.



## Other solutions

A summing board has a key to get the enough wide dynamic range.



I started making a new summing board for the coming beam test at CERN SPS complex in September.

#### A new summing board includes

- voltage followers to improve the linearity of the summed signal
- triple amplification / attenuation factors (1, 10 and 100 times)
- the fully differential signal processing to improve S/N, and
- transformers to isolate the signal ground from the APV25 ground.



## New readout system

As one of possibilities, we are thinking to use VMM3 hybrid boards instead of APV25 hybrid boards under CERN RD51 collaboration.

It is expected to obtain better S/N since the VMMx family ASIC has analog-to-digital converters.



# VMM3 (after VMM2)

We can use the same FEC card continuously. The D cards (prototype) were reproduced in Japan in 2015. The new D cards will be available shortly.

The VMM2 hybrid prototype was tested in 2015 and the new VMM3 hybrid prototype for testing is under the fabrication.





D card



VMMx FEC card

Thank you for your attention.