

Exploring the QGP with Jets at ALICE

Oliver Busch

University of Tsukuba

- jets in pp collisions
- jets in heavy-ion collisions
- jet nuclear modification factor
 - event plane dependence
 - collision energy dependence
- strangeness production in jets
- jet mass

Introduction

te on 23-Aug-1996 13:39:06 by DREVER MANN with DALL D rame : DC015768_005906_960838_1338.PS_2U_3J

- jet: collimated bunch of hadrons
- quasi-free parton scattering at high Q²: the best available experimental equivalent to quarks and gluons

Jet fragmentation

- initial hard scattering: high-p⊤ partons
- cascade of gluons: parton shower
- at soft scale (O(Λ_{QCD})): hadronization

 in heavy-ion collisions, jets probe the medium at a variety of scales

Fragmentation = Parton shower + hadronization

Jet reconstruction

Jet 3

Detector

Hadrons

Mesons:

Pions.

Kaons,

etc.

10¹m

Deposited Energy:

Jet 2

Hadronic

Electromagnetic

10^{.15}m

6

Track Hits

Baryons:

Protons.

Neutrons.

- Establish correspondence between detector measurements / final state particles / partons
- two types of jet finder:
 - iterative cone
 - sequential recombination (e.g. anti-k_T)
- resolution parameter R

Jets at ALICE (run 1)

- jet trigger with EMCal and TRD
- `charged' (tracking) jets and `full' jets
- full jets from charged particle tracking and EM energy: conceptually different and complementary to traditional approach

- charged particle tracking:
 - Inner Tracking System (ITS)
 - Time Projection Chamber (TPC)
 - full azimuth, |η |< 0.9 p_T > 150 MeV/c
- Electromagnetic Calorimeter (EMCal) :
 - neutral particles
 - Δφ = 107°, |η|<0.7 cluster E_T > 300 MeV

Jet Cross Section in pp Collisions

R = 0.2		R = 0
i-k _⊤ , R = 0.2, η <0.5	6 3 🖬	anti-k _τ , R = 0.4, η <0.5

good agreement with NLO pQCD calculations for R = 0.2 and R = 0.4

reference for Pb-Pb at same energy

Phys. Lett. B 722 (2013) 262

CMS: jets at $\sqrt{s} = 7$ TeV

- single inclusive jet cross sections compared to NLO pQCD: agreement over 14 orders of magnitude
- comparable theoretical and experimental uncertainties
- complementary jet p_T reach of the LHC experiments

pp charged jet cross-sections

- inclusive charged jet cross section in minimum bias collisions at \sqrt{s} = 5.02 TeV: well described by POWHEG NLO calculations
- cross section ratio: well described by PYTHIA and POWHEG
- reference for run 2 Pb-Pb collisions at same $\sqrt{s_{NN}}$

Jets and Quark-Gluon Plasma

QCD phase transition

HotQCD, PRD 90, 094503

- in heavy-ion collisions at ultra-relativistic energies, a quasi macroscopic fireball of hot, strongly interacting matter in local thermal equilibrium is created
- lattice QCD predicts phase transition to deconfined, chirally symmetric matter

 energy density from the lattice: rapid increase around T_C, indicating increase of degrees of freedom (pion gas → quarks and gluons)

• T_C = 154 +/- 9 MeV E_C = 340 +/- 45 MeV/fm³

QCD matter at LHC

- direct photons: prompt photons from hard scattering
 + thermal radiation from QCD matter
- low-p⊤ inverse slope parameter: T_{eff} = 297 ± 12^{stat.} ± 42^{syst.} MeV/c
- indicates initial temperature way above T_C

- hard partons are produced early and traverse the hot and dense QGP
- expect enhanced parton energy loss : `jet quenching' (mostly) due to medium-induced gluon radiation
- 'vacuum' expectation calculable by pQCD : 'calibrated probe of QGP'
- jets sensitive to properties of the medium (energy density, \hat{q} , mean free path, coupling ...)
- ... but also jet-medium interaction not trivial (strong / weak coupling, parton mass / type, fireball dynamics ...)

JET collaboration, PRC 90, 014909

Hadrons in heavy-ion collisions

high-p⊤ hadrons 'proxy' for jet

 $R_{AA}(p_{\rm T}) = \frac{1}{T_{AA}} \frac{\mathrm{d}^2 \mathrm{N}_{\mathrm{ch}}/\mathrm{d}\eta \,\mathrm{dp_{T}}}{\mathrm{d}^2 \sigma_{\mathrm{ch}}^{\mathrm{pp}}/\mathrm{d}\eta \,\mathrm{dp_{T}}}$

• jet quenching for charged hadrons, Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

PLB 720 (2013) 250

- hadron observables biased towards leading fragment
- → study the effect for fully reconstructed jets

ALICE Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Underlying event

- jet reconstruction in heavy-ion collisions : difficult due to the high underlying event background not related to hard scattering
- correct spectra for background fluctuations and detector effects via unfolding

- full jet R_{AA} at $\sqrt{s_{NN}}$ = 2.76 TeV, R = 0.2
- strong suppression observed, similar to hadron R_{AA}
 → parton energy not recovered inside jet cone

Phys.Lett. B746 (2015) 1

JEWEL: PLB 735 (2014) YaJEM:PRC 88 (2013) 014905

Jet azimuthal anisotropy

Reaction plane dependence

- different medium thickness in- and out-of plane
- sensitive to path length dependence of jet quenching: pQCD radiative E-loss : ~L² collisional E-loss : ~L strong coupling (ADS/CFT) : ~L³

- account for flow-modulation of background via event-by-event fit and subtraction of local background density
- unfolding to account for background fluctuations : separately for spectra in- and out-of-plane

Phys. Lett. B753 (2016) 511

Jet v₂: results

- quantify azimuthal asymmetry via 2nd Fourier harmonic v₂^{ch jet}
- central collisions: 1.5 2 sigma from $v_2^{ch jet} = 0$
 - \rightarrow consistent with 0, but maybe hint for effect of initial density fluctuations ?
- non-zero v₂^{ch jet} in semi-central collisions

23

ر ₂iet ALICE ALICE $v_2^{ch jet}$ 0-5%, Stat unc. $v_2^{\text{ch jet}}$ 30-50%, Stat unc. Pb-Pb $\sqrt{s}_{NN} = 2.76 \text{ TeV}$ 0.3 Pb-Pb $\sqrt{s}_{NN} = 2.76 \text{ TeV}$ v_2^{part} Syst unc. (shape) $v_2^{\rm part}$ Syst unc. (shape) $R = 0.2 \text{ anti-} k_{T}, |\eta_{int}| < 0.7$ $R = 0.2 \text{ anti-} k_{T}, |\eta_{iat}| < 0.7$ Syst unc. (correlated) Syst unc. (correlated) ATLAS $v_2^{\text{calo jet}}$ 5-10% ATLAS v₂^{calo jet} 30-50% 0.2 0.2 CMS $v_{2}^{\text{part}}{|\Delta\eta|>3}$ 0-10% CMS $v_2^{\text{part}}\{|\Delta\eta|>3\}$ 30-50% ALICE $v_{2}^{\text{part}}\{|\Delta \eta|>2\} 0.5\%$ ALICE v₂^{part}{|Δη|>2} 30-50% 0.1 0.1 0 0 $p_{_{T, \text{ track}}} > 0.15 \text{ GeV}/c, p_{_{T, \text{ lead}}} > 3 \text{ GeV}/c$ $p_{T, \text{ track}} > 0.15 \text{ GeV}/c, p_{T, \text{ lead}} > 3 \text{ GeV}/c$ (b) (a) 50 100 150 0 50 100 150 0 $p_{_{\mathrm{T}}}^{_{\mathrm{part}}}, p_{_{\mathrm{T}}}^{_{\mathrm{jet}}}$ (GeV/c) $p_{_{\mathrm{T}}}^{_{\mathrm{part}}},\,p_{_{\mathrm{T}}}^{_{\mathrm{jet}}}\,(\mathrm{GeV}/c)$

 ALICE + CMS single particles, ATLAS full jets : different energy scales !

non-zero v2 up to high pT

ATLAS, PRL 111 (2013) 152 ALICE, Phys. Lett. B753 (2016) 511 ALICE, Phys. Lett. B719 (2013) 18

CMS, PRL 109 (2012) 022

Comparison to JEWEL

- good agreement with JEWEL in semi-central collisions
- clear indication of path-length dependence of energy loss

Phys. Lett. B753 (2016) 511

Jet Nuclear Modification Factor at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

LHC run 2

- increased CMS energy for Pb-Pb collisions from 2.76 \rightarrow 5.02 TeV
- quenching strength $\hat{q} \sim s \sim \epsilon^{3/4}$
- expect (modest) increase in ε, T

 → measure energy density
 dependence of jet quenching
- note: R_{AA} also depends on parton 'input spectrum': at higher √s, flatter spectrum → larger R_{AA}

H A A

 $R_{\rm AA}$

1.2

0.8

0.6

0.4

90

ALI-PREL-113513

20

30

40

50

60

70

80

90

 $p_{_{\rm T,ch\,iet}}$ (GeV/c)

100

ALICE Pb-Pb Vs_{NN} = 5.02 TeV

Data 0-10 % (pp:Data)

📥 Data 10-30 % (pp:Data)

Data 10-30 % (pp:POWHEG)

Anti- $k_{\tau} R = 0.2 |\eta_{\perp}| < 0.7 p_{\tau}^{\text{lead}} > 5 \text{ GeV/}_{C}$ Data 0-10 % (pp:POWHEG)

• jet cross section and nuclear modification factor at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

stronger suppression in more central

-e- pp(Data)

---- 0-10 % Pb-Pb

80

90

 $ho_{\rm T,ch\,jet}~({\rm GeV/c})$

100

shape uncertainty

correlated uncertainty

ALICE Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Oliver Busch - HI café, Tokyo 2017/01

ALI-PREL-113505

RFSE

10²

10

$\sqrt{s_{NN}}$ dependence of R_{AA}

- charged jet R_{AA} at $\sqrt{s_{NN}}$ = 5.02 TeV compared to:
 - ALICE full jet R_{AA} at 2.76 TeV (R = 0.2)
 - ATLAS jet R_{AA} (R = 0.4)
 - \rightarrow different jet energy scales
- comparable R_{AA}: effect of flattening of the spectrum compensated by stronger suppression

Strangeness Production in Jets

Identified hadrons in heavy-ion collisions

understanding of parton energy loss:

- PID in reconstructed jets mitigates fragmentation biases
- enhanced sensitivity to medium effects measuring soft particles in jets

 note: medium effects likely strongest at scales of ~ medium Temperature (J.G. Milhano, K. C. Zapp, hep-ph/1512.0819, T. Renk, Phys. Rev. C 81, 014906, B. Mueller, hep-ph/1010.4258) Strange hadron reconstruction

- neutral strange particles reconstructed via decay topology (' V^{0} '):
 - $K_{S}^{0} \rightarrow \pi^{+} + \pi^{-}$ (69.2%) $\Lambda \rightarrow p + \pi^-$ (63.9%)
- signal extraction from invariant mass distributions

Strangeness production in nuclear collisions 🍀

- Inclusive strangeness production in Pb-Pb: Baryon / Meson ratio enhanced
 - collective effects ?
 - parton recombination ?
 - jet fragmentation ?

Phys. Rev. Lett. 111 (2013) 223001

 measurement of identified particles in jets helps to constrain hadronisation and energy loss scenarios

Strangeness in jets

candidate - jet matching (V⁰ in jet cone)

$$\sqrt{(\phi_{\mathsf{V}^0} - \phi_{\mathsf{jet,ch}})^2 + (\eta_{\mathsf{V}^0} - \eta_{\mathsf{jet,ch}})^2} < R_{\mathrm{v}}$$

$$|\eta_{\rm jet,ch}|^{\rm max} < |\eta_{\rm V^0}|^{\rm max} - R$$

- jet R = 0.2, acceptance $|\eta^{\vee 0}| < 0.7$
- candidate bulk matching: underlying event V⁰
- signal extraction from invariant mass distributions
- correct for efficiency and feed-down
- subtract underlying event from spectra

Underlying event subtraction

- subtract underlying event contribution to K^{0}_{S} , Λ spectra in jets
- various methods with different sensitivity to acceptance, event plane correlations, presence of additional jets, ...
- apply a correction to account for background density fluctuations

 $(\Lambda + \Lambda)/2K^{0}_{s}$ ratio in jets

- Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
- jet R = 0.2
- p_T^{jet} > 10 GeV/c (20 GeV/c)
- leading constituent bias p_T^{leading} > 5 GeV/c to reject 'fake' jets
- no significant jet p_T^{jet} dependence
- ratio in jets significantly lower than for inclusive case

Comparison to p-Pb

 compare Pb-Pb results to reference from p-Pb collisions at 5.02 TeV: agreement within uncertainties

 spectra of K⁰_S and Λ particles in jets: more differential observable to increase sensitivity to potentially modified fragmentation

Comparison to PYTHIA

- K⁰_S spectra in jets follow similar slope as predicted by PYTHIA simulations
- Λ shape different ? More reliable reference needed !

Jet Mass

Mass and virtuality

- invariant mass of jet constituents, related to virtuality of initial parton
- parton from hard scattering produced off-shell
- in vacuum: virtuality decreases at each emission
- in medium, virtuality can rise due to scatterings

 \rightarrow quenching observable

- soft constituents far from jet axis within cone → larger mass
- few hard constituents \rightarrow smaller mass

Results: pPb

- jet mass in pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, charged jets with R=0.4
- overall well described by PYTHIA with some tension in the tails

Results: Pb-Pb

• jet Mass in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV fully corrected for detector effects and background fluctuations via 2D unfolding

Results: Pb-Pb

• jet Mass in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV fully corrected for detecor effects and background fluctuations via 2D unfolding

- small \sqrt{s} dependence is expected (quark / gluon composition)
- compare the ratio Pb-Pb / pPb to the ratio in PYTHIA at the 2 energies

$$\Re_{\sqrt{s}} = \frac{\frac{1}{N_{\text{jets}}} \frac{dN}{dM_{\text{chjet}}} |_{\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}}}{\frac{1}{N_{\text{jets}}} \frac{dN}{dM_{\text{chjet}}} |_{\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}}}$$

Ratio Pb-Pb / p-Pb

 slope indicates that Pb-Pb distribution is shifted towards smaller masses with respect to pPb

Model comparison

- data lies in between PYTHIA and JEWEL with 'recoils off'
- Q-PYTHIA and JEWEL with 'recoils on' produce too large mass

• Q-PYTHIA: radiative energy loss modelled by enhanced splitting functions (N. Armesto, L. Cunqueiro, C. A. Salgado, hep-ph/0907.1014)

ALICE in run 2: DCal

- run 2: DCal upgrade
 - significantly extended jet acceptance
 - back-to-back in azimuth (di-jet topology)
- new avenues for jet physics in ALICE

- jet cross sections and properties in pp
- strong jet suppression observed in Pb-Pb collisions
- first jet nuclear modification factor from run 2 indicates stronger suppression at higher energy
- non-zero jet v₂ indicates path-length dependence of jet quenching
- strange particles in jets
- first measurement of jet mass in HI collisions indicate shift to smaller masses
- first results from run 2 more to come !

- Backup -

ALICE jet response

Phys. Lett. B 722 (2013) 262

 comparison to PYTHIA pp reference shows collimation of jet core (R=0.2)

• different observables, e.g. radial moment g, p_TD

Jet Structure

 $p_{\rm T}D = -$

trends reproduced by JEWEL jet quenching model

JEWEL: K.C. Zapp, F. Kraus, U.A. Wiedemann, JHEP 1303 (2013) 080

筑波大学 Jaiversity of Tsukuba

- measured in minimum bias collisions at \sqrt{s} = 7 TeV
- good agreement with ATLAS charged jet measurements (despite slightly different acceptance and track p_T range)

 $\sqrt{s_{NN}}$ dependence of R_{AA}

- charged jet R_{AA} at $\sqrt{s_{NN}}$ = 5.02 TeV compared to:
 - ALICE full jet R_{AA} at 2.76 TeV (R = 0.2)
 - ATLAS jet R_{AA} (R = 0.4)
 - \rightarrow different jet energy scales
 - comparable R_{AA}: effect of flattening of the spectrum compensated by stronger suppression

