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Abstract

In heavy-ion collision experiments, the study of event-by-event fluctuation is a powerful tool to
characterize the thermodynamic properties of the hot and dense QCD matter. According to
the Lattice QCD calculations, an analytic crossover exists at small µB regions, but there is no
experimental evidence for the location of predicted crossover, and the detail structure of the
QCD phase diagram is not known well. Especially, the location of the critical point which is the
end point of the first-order phase transition boundary is unknown. According to the theoretical
prediction, higher-order fluctuations of conserved quantities, such as net-baryon, net-charge and
net-strangeness, diverge near the critical point. In addition, it is thought that up to the sixth-
order cumulants and cumulant ratios of conserved quantities may be the signal of the crossover.
The STAR experiment published up to the fourth-order cumulants and cumulant ratios of net-
proton, net-charge and net-Kaon distributions. In this thesis, cumulants and cumulant ratios of
net-charge distributions up to the sixth-order in Au+Au collisions at

√
sNN = 200 and 54 GeV

have been measured, and compared to Poisson, NBD baseline and UrQMD simulation. The
results are also compared to the net-proton results which have already reported as a preliminary
by the STAR experiment. It was reported that C6/C2 had the negative value at

√
sNN = 200

GeV and positive value at
√
sNN = 54 GeV in 0-40% centrality in net-proton results. In net-

charge C6/C2, the small deviation has been observed in 40-50% centrality at
√
sNN = 54 GeV,

but consistent with the baseline within statistical errors in other centralities. The deviations
from the statistical baseline have not been observed at

√
sNN = 200 GeV.

Compared to the published net-charge results, analysis and correction methods are improved.
The efficiency corrections have been done for different pT regions and the different particles
species separately whereas average efficiencies were applied in published results. The factorial
cumulant method makes it possible to calculate cumulants with shorter CPU time compared
to the factorial moment method which is the conventional method. Sσ (= C3/C2) and κσ2

(= C4/C2) of the net-charge distributions at
√
sNN = 54 GeV are newly measured in addition

to the published Beam Energy Scan I (BES-I) results, and the results at
√
sNN = 54 GeV are

in good agreement with the previous BES-I results.
In addition to the sixth-order cumulants analysis, ∆η, which represents the finite rapid-

ity window, dependence of net-charge cumulants have been measured. ALICE experiment
published ∆η dependence of D-measure which corresponds to the second-order cumulant over
multiplicity in Pb-Pb collisions at

√
sNN = 2.76 TeV. When we suppose hadron gas, D-measure

is expected to be 3-4, while it would be about 1-1.5 in QGP. ALICE reported that D-measure
decreases with increasing ∆η, and also decreases when going from peripheral to central colli-
sions. However, ∆η dependence of net-charge cumulants including D-measure have not been
investigated in great detail at lower beam energies. Theoretically, ∆η dependence of D-measure,
third and fourth-order cumulants are predicted by the diffusion master equation (DME) model
calculations but there are many parameters of the initial conditions. Therefore, it is important
to measure these values experimentally in order to determine the initial condition parameters
of the model.

In this thesis, ∆η dependence of net-charge cumulants, cumulant ratios and D-measure have
been measured at BES-I energies,

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV. D-

measure has been observed to decrease with increasing ∆η, and this increasing trend is stronger



at higher beam energies, which do not conflict with the previous results from ALICE. The
C3/C2 and C4/C2 have been observed to increase with ∆η in all BES-I energies except for the
most central collision at

√
sNN = 200 GeV, which are close to the model prediction with the

large higher-order susceptibilities.
Finally, the validity of the new correction method called Volume Fluctuation Correction

(VFC) has been studied. Initial volume fluctuation (VF) caused by event-by-event initial par-
ticipant fluctuation would be the background which should be subtracted experimentally from
the measured higher-order cumulants. STAR experiment has been applying Centrality Bin
Width Correction (CBWC) to suppress VF. However, there might be some residual fractions of
VF backgrounds even with CBWC. Recently, the VFC was developed under the assumption of
the independent particle production (IPP) model. In this thesis, the importance of subtracting
VF and validity of the VFC for both net-charge and net-proton cumulants have been studied
by using simple toy model assuming IPP as well as UrQMD model. The results shows that
VFC works could need to be applied in toy model, but does not seem to work well in UrQMD
model, which imply that IPP model is expected to be broken in UrQMD. If we apply VFC to
the experimental data, we would need to consider this effect.

In addition, there is a physics correlation between multiplicities used for the centrality
determinations and the number of charged particles which are used for the cumulant analysis.
This correlation may suppress the cumulants like an auto-correlation effect. Thus, we would
have to treat this effect which is not considered in toy model simulation. UrQMD simulation
tells that using the experimental centrality definition, which corresponds to the multiplicity
measured in 0.5 < |η| < 1 in net-charge analysis and 0 < |η| < 1 without proton and anti-proton
in net-proton analysis, are not enough to eliminate the multiplicity correlation. Therefore, we
would have to consider these effect in future analysis. At STAR experiment, using the Event
Plane Detector (EPD) which is used for the external centrality measurement from BES-II could
be one of the solution to reduce this effect.
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Chapter 1

Introduction

In this chapter, we introduce the fundamental particles and the theory of the strong interaction
which is described by Quantum Chromodynamics (QCD). Then, phase transition of the QCD,
previous results are shown and finally thesis motivation is discussed.

1.1 Standard Model

Atoms composing the matter in our world consist of nuclei and electrons. Nuclei consist of
nucleons, such as protons and neutrons, are composed of three quarks. Quarks are considered
as the most fundamental particles. This hierarchical structure of the matter is shown in Fig. 1.1.

Figure 1.1: Hierarchical structure of the matter [1]

Properties and interactions of the elementary particles are well described by Standard Model.
In this world, there are four fundamental forces which are gravitational, electromagnetic, strong
and weak interactions, and Standard Model can describe three interactions without gravitational
force. Fig. 1.2 shows the Standard Model of elementary particles. There are 12 fermions of spin
1
2 , 4 gauge boson of spin 1 and Higgs bosons of spin 0. Each particle is characterized by their
mass, spin and the electric charge which are written in Fig. 1.2. Fermions can be classified into
2 groups which are 6 quarks (u, d, c, s, b, t) and 6 leptons (e, µ, τ, νe, νµ, ντ ). The gauge bosons
are vector bosons and carry the fundamental interactions. The Higgs boson is the scalar boson,
and experimentally confirmed in December, 2013 for the first time. The Higgs field gives the
mass of the SM particles.

1



Figure 1.2: Standard Model of Elementary Particles [2]

1.2 Quantum Chromodynamics

The strong interaction is known for the mechanism of the strong nuclear force and the strong in-
teraction between quarks and gluons which are described by Quantum Chromodynamics (QCD).
The classical Lagrangian density (L ) of the QCD [3][4] is expressed by

L =

Nf∑
f

q̄f (iγ
µDµ −mf )−

1

4
F a
µνF

a
µν , (1.1)

where γµ is called gamma matrices or Dirac matrices and qf is the quark field. According to
the QCD, each quark has three flavor which comes in three different colors (f = 1, 2, 3). Dµ

represents the co-variant derivative of QCD and Fµν is defined as gluon field strength tensor.
F a
µν and Dµ are expressed by

Dµ = ∂µ + ig
λa

2
Aa

µ, (1.2)

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcA

b
µA

c
ν , (1.3)

where λa denotes the Gell-Mann matrix, and Aa
µ is the gluon field of color (a = 1, 2...8). g is

the coupling constant of QCD, which corresponds to the charge e in electromagnetic dynamics.
The quarks are combined to form hadrons. Hadrons are classified into baryons and mesons.

Baryons are the fermions consist of three quarks, such as protons and neutrons. Mesons are the
bosons consist of two quarks, such as pion and Kaon.

There are two important characteristics of QCD which are ”color confinement” and ”asymp-
totic freedom”. If momentum transfer Q is large (Q > 1 GeV) or distance among partons is

2



small, perturbative QCD (pQCD) calculation can be used. According to pQCD calculations,
coupling strength represented as αs can be written by

αs(Q
2) =

1

β0ln(Q
2/Λ2)

, (1.4)

where β0 is written as

β0 =
33− 2Nf

12π
. (1.5)

Λ is called the QCD scale parameter and Nf is the number of quark flavors. Q represents the
transfer momentum.

If distance among partons is small or Q is large, αs become smaller which means that
interaction among quarks become asymptotically weak. This property is called asymptotic
freedom. On the other hand, if distance among partons is large or Q is small, αs became larger
which means that partons are confined in hadron, which is called color confinement. Fig. 1.3
shows the coupling strength as a function of transfer momentum, and the solid line shows the
pQCD calculation.

Figure 1.3: The coupling constant as a function of transfer momentum [5]
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1.3 Quark-Gluon Plasma

From Eq.(1.4), the coupling strength diverges with Q→0. This result shows pQCD calculation
can not be applied for small Q region. Lattice QCD is one of the non-perturbative methods,
and tells us properties of the quarks at small Q region. Fig. 1.4 shows the ϵ/T 4 as a function
of temperature T scaled by critical temperature Tc by Lattice QCD calculations, where ϵ is the
energy density [6]. At Fig. 1.4, ϵ/T 4 is largely changed around T∼Tc. The extrapolated Tc is
Tc = 155 MeV for Nf = 3 case and ϵc corresponds to ϵ = 0.5-1.0 GeV/c.Lattice QCD at High Temperature and Density 27
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Fig. 14. The energy density in QCD. The upper (lower) figure shows results from
a calculation with improved staggered [21] (Wilson [44]) fermions on lattices with
temporal extent Nτ = 4 (Nτ = 4, 6). The staggered fermion calculations have been
performed for a pseudo-scalar to vector meson mass ratio of mPS/mV = 0.7.

7 The Critical Temperature of the QCD Transition

As discussed in Section 3 the transition to the high temperature phase is continuous
and non-singular for a large range of quark masses. Nonetheless, for all quark masses
this transition proceeds rather rapidly in a small temperature interval. A definite
transition point thus can be identified, for instance through the location of peaks in
the susceptibilities of the Polyakov loop or the chiral condensate defined in Eq. 21.
For a given value of the quark mass one thus determines pseudo-critical couplings,
βpc(mq), on a lattice with temporal extent Nτ . An additional calculation of an
experimentally or phenomenologically known observable at zero temperature, e.g.

Figure 1.4: ϵ/T 4 as a function of the temperature T/Tc from Lattice QCD calculation [6]

This large jump indicates that phase transition occurs around Tc from hadron phase to
”Quark-Gluon Plasma (QGP)” phase. QGP phase is considered as a new phase that quarks
and gluon move freely like a ”plasma”. Fig. 1.5 shows the sketch of the phase transition from
hadron to QGP phase.

Figure 1.5: Sketch of the QCD phase transition [7]

The ϵ/T 4 jump shown in Fig. 1.4 can be explained by very simple model called ”Bag model”
[3][8]. Let us introduce the massless free pion gas and free quarks and gluons gas. Then, energy

4



density and entropy density can be written as follows:

ϵH = 3dπ
π2

90
T 4, (1.6)

sH = 4dπ
π2

90
T 3, (1.7)

where dπ is the number of degrees which is expressed as

dπ = N2
f − 1, (1.8)

where Nf is the number of flavors. Next, energy density and entropy density in QGP phase can
be written by the same procedures as:

ϵQGP = 3dQGP
π2

90
T 4 +B, (1.9)

sQGP = 4dQGP
π2

90
T 3, (1.10)

where B represents bag constant and dQGP is written as

dQGP = dg +
7

8
dq, (1.11)

dg = NspinNcg, (1.12)

dq = NspinNqq̄NcqNf . (1.13)

dg and dq show the number of degrees of gluon and quark respectively. In this case, number of
degrees of spin, color, flavor and quark/anti-quark are Nspin = 2, Ncq = 3, Nf = 2 and Nqq̄ = 2
respectively, and number of degrees of gluon color is Ncg = 8. As a result, dπ = 2 × 2 − 1 = 3
and dQGP = 2× 2+ 7

8 × 2× 2× 3× 2 = 37. Therefore, ϵQGP is twelve times larger than ϵH and
this result is consistent with the Lattice QCD results even though assumptions of this model
are very simple.

Fig. 1.6 shows the history of the universe. It is believed that QGP existed after ∼ µ seconds
from the Big Bang. Then, QCD phase transition occurred and hadrons were formed. After
that, nuclei, atoms, planet, galaxy and finally our present universe were formed. Therefore,
discovering the properties of QGP means not only understand the properties of the quarks but
also understand the beginning of the universe. In addition, QGP is considered to exist inside
of the neutron star because of the high density.

The phase transition from QGP phase to hadron phase is also explained by ”chiral symmetry
breaking” which is the spontaneous symmetry breaking of the chiral symmetry. For example,
proton is composed of two up quarks and one down quark. However, the proton mass (938
MeV) is much larger than sum of the quark mass in Fig. 1.2. Therefore, the mass of the matter
around us is mostly coming from QCD, and the mass given by Higgs field is only few percent
fraction of the matter.
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Figure 1.6: History of the universe [5]

1.4 Relativistic heavy-ion collision

As mentioned in the previous section, QGP can exist at extremely high temperature or high
density places. Therefore, it is difficult to create QGP on the earth. A unique way to create
QGP on the earth is using heavy-ion collider. Charged particles are accelerated by the collider
up to the nearly speed of the light, and then collide at the point. This way we can achieve
very high temperature and create QGP, the matter close being created after the Bing Bang.
Therefore, this is called ”Little Bang”. In order to create and figure out the properties of
the QGP, various experiments have been conducted at RHIC-STAR experiment at BNL or
LHC-ALICE experiment at CERN, etc. Tab. 1.1 shows the history of the heavy-ion collision
experiment.
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Table 1.1: Summary of relativistic heavy-ion collisions
Year Accelerators Location Species sNN Energy(GeV)

1986 AGS BNL 16O, 28Si 5.4
1992 197Au 4.8

1986 SPS CERN 16O, 32S 19.4
1994 208Pb 17.4

2000 RHIC BNL 197Au 130
2001 197Au 200
2003 d+197Au 200
2004 197Au 200, 62.4
2005 63Cu 200, 62.4, 22.4
2007 200Au 200
2008 d+197Au 200, 62.4
2010 197Au 200, 62.4, 39, 11.5, 7.7
2011 197Au 200, 19.6, 27
2012 238U 193
2012 63Cu+197Au 200
2014 197Au 200, 14.6
2014 3He+197Au 200
2015 p+197Au 200
2015 p+197Al 200
2016 197Au 200
2016 d+197Au 200, 62.4, 19.6, 39
2017 197Au 54
2018 96Zr,96Ru 200
2018 197Au 27

2010 LHC CERN 208Pb 2760
2011 208Pb 2760
2013 p+208Pb 5020
2015 208Pb 5020
2016 p+208Pb 5020, 8160
2017 129Xe 5440
2018 208Pb 5020

Next, we will consider the space-time evolution after heavy-ion collision at the experiment.
Fig. 1.7 is the schematic description of the heavy-ion collision. z and t represent the space
and time dimension, and both nuclei collide at (t, z) = (0, 0). In relativistic heavy-ion colli-
sion, it is useful to use kinetic variables which take simple form or unchanged under Lorentz
transformations. Therefore, let us introduce the proper time of the particles which is defined as

τ =
√

t2 − z2. (1.14)

In Fig. 1.7, t2−z2 > 0 region is called time-like region and t2−z2 < 0 is called space-like region.
In heavy-ion collision, particle production occurs in the upper half of the time-like region. After
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collisions, particles are produced by following procedures.

Pre-equilibrium 0 < τ < τ0
A lot of particles are produced by parton-parton hard scattering in the overlap region of two
nuclei. Several model such as pQCD, color Glass Condensate (CGC) and string model tried to
describe this stage. However, medium properties are not understood perfectly.

QGP phase and phase transition τ0 < τ < τch
After Pre-equilibrium stage, partonic matters reach to the local thermal equilibrium and the
QGP is formed. After that, the system expands due to the high pressure, and then system cool
down. QCD phase transition takes place at critical temperature Tc and hadrons are formed.

Freeze-out　 τch < τ < τf
Then, system expands with hadron-hadron interaction and number of species are fixed at Tch

which is called ”Chemical freeze-out”. Then, hadron interactions are stopped and momentum
of the particles are fixed at Tf which is called ”Kinetic freeze-out”.2 Advances in High Energy Physics

t

!f

Hadron gas

QGP

Beam
Beam

!0

z

QCD phase
transition

Thermalization
Parton cascade

Kinetic freeze-out

Chemical freeze-out

Figure 1:The space-time evolution of heavy-ion collision.Thefigure
is taken from [28].

(ii) Lattice QCD results predicted two orders for phase
transition(s). It is argued that a first-order phase
transition is likely in system consisting of two flavors
while a second-order one is likely in the three-flavor
system. Furthermore, a smooth cross-over was seen
in the QCD simulations. Linking such theoretical
predictions with the experimental results would be
possible through varying the critical temperature. For
instance. at low temperature, the matter is confined,
that is, hadronic phase, while at high temperature,
QGP phase is likely [12].

(iii) The strangeness enhancement at alternating gradient
synchrotron (AGS) is found larger than that at super
proton synchrotron (SPS), which obviously seems to
weaken the concept of strangeness enhancement as
a signal of QGP [13]. Nevertheless, the search for
enhancement at RHIC and LHC energies should be
continued.

(iv) The estimation of the time span till equilibration
refers to very small value (∼10 fm/c). Thus, the evo-
lution of the equilibrated states cannot be evident
[14]. Thus, it would not be possible to assure that
the hadronic phase was originated in a partonic state
(prior to hadronization) [14]. The situation becomes
more drastic at RHIC and LHC energies.The critical
and freeze-out temperatures become almost indistin-
guishable [14].

The balance functions (BF) were proposed by Bass et al.
[15] as a measure for the correlation of the positive and nega-
tive charged particles produced during the relativistic heavy-
ion collisions.Their width can be related to the hadronization
time. The charge correlation functions which are devoted to
study the jets hadronization [16] are used to derive BF. So
far they have been estimated in pp collisions at intersecting
storage rings (ISR) [17–19], e+ + e− annihilation at PETRA at
DESY [20–24], Au+Au, in STAR experiment at BNL RHIC
[25], and Pb+Pb in NA49 experiment at CERN SPS [26, 27].
Due to charge conservation, oppositely charged particles are
produced in pairs. But the produced pairs are separated in the
rapidity region due to their different momenta. This implies

that BF can be extracted from the fact that the pairs of
opposite charges are created in the local space. This idea
defines how to proceed with the measurement of balance
between produced pairs.

The different heavy-ion experiments can be differentiated
according to the collision energy or nucleon-nucleon (NN)
center-of-mass energy√#NN [46], the system size, and type of
reactants whether being elementary, NN, or nucleus-nucleus
(AA) collisions$ = 12 ln(& + '"& − '") = ln(& + '"*⊥ ) , (1)

where'" is the longitudinalmomentumand*⊥ = √*2 + '2$
is the transverse mass. The Lorentz boosts are the trans-
formations with respect to one of three dimensions taking
as the frame of reference. At ultrarelativistic energies, it
is convenient to deal with the pseudorapidity, ,, which is
defined in analogy to $, (1):, = − ln [tan(.2)] , (2)

where . is the angle of emitted particles relative to the beam
axis.

The present work is organized as follows. Section 1
presents a general overview about the history of QGP.
Section 2 is devoted to the various definitions of BF. The
experimental measurements will be discussed in Section 3.
Section 4 discusses some effective models used to calculate
BF in high-energy physics. Finally, Section 5 presents the
discussion and conclusions.

2. Definitions

In relativistic heavy-ion collisions, it is assumed that many
produced particles of different charges expand in temporal
and spatial dimensions [39]. Due to charge conservation,
both positive and negative charges have to be produced in
the same space-time during the evolution of the medium.
The correlation between the opposite charges is characterized
through BF, which apparently measure the balance between
both types of charges [47]. In early studies, Bass et al. [15] have
proposed that BF are signatures differentiating between early-
and late-stage of the hadronization. The balance functions
are proposed to work as a “clock” determining whether the
quark production occurred at early times, 0 < 1 fm/c, or
at late-stage [15]. For charges created in the early stage,
balancing charges are separated by the order of one unit of
rapidity, while those formed in a late stage are far from the
correlation. Delayed hadronizationmeans that theQGP stays
for a long time. This implies that the QGP might be formed
at a certain time before the evolution of the hot matter. In
principal, BF were proposed to investigate the hadronization
from jets production in proton-proton collisions [17, 18]. In
a series of papers [17, 18, 48], BF were associated with charge
correlations.

Furthermore, the conditional probability is the probabil-
ity that an event will occur under some conditions, while

Figure 1.7: Time-space expansion after the heavy-ion collision [9]
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1.5 Beam Energy Scan (BES)

Fig. 1.8 shows the schematic diagram of QCD. According to the Lattice QCD calculations,
crossover transition occurs at small µB region. However, there are no experimental evidence of
crossover or first-order transition. Especially, the location of the Critical Point (CP) which is
the end point of the first-order phase transition boundary is still unknown. In order to figure
out the detail structure of the QCD phase diagram, Beam Energy Scan I (BES-I) program had
been done from 2010 to 2014 at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeVat RHIC.

If the collision energy become lower, µB become larger due to the baryon stopping. Therefore,
we can scan the phase diagram with variable collision energy with different µB and T . Thus,
it is important to measure the observables with various collision energies in order to figure out
the structure of the phase diagram and find the evidence of CP.
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Figure 1. The picture of the QCD Phase Diagram with marked coverage of the RHIC BES
program. Yellow trajectories represent schematics of the collision evolution at di↵erent energies
of the BES program. The red circle symbolizes the critical point. Note, that yellow lines and
the red circle are for illustrative purpose only.

The Au+Au collisions at lower, i.e. below the injection point, energies, available presently
at RHIC, should be able to reach a chemical potential region of interest, and therefore allow for
the exploration of the first-order phase transition, and possibly of the CP.

In 2010 and 2011 RHIC completed phase I of the BES program with data sets at 7.7, 11.5,
19, 27 and 39 GeV. This is complemented by the data collected earlier at higher energies (62,
130 and 200 GeV). Together they cover the µB interval from 20 to 450 MeV, which is believed
to contain the range associated with the first order phase transition and CP.

In the following sections a short discussion of BES program specific goals, together with a
few preliminary results of analyzed phase I data, will be presented.

2. Beam Energy Scan Program at RHIC
Presently the BES program is focused around three goals.

The first one, and the easiest, is to scan the phase diagram with variable collision energy
(di↵erent µB and T) to find whether (and where in the

p
sNN ) the key QGP signatures observed

at the top RHIC energy have been turned o↵. This may suggest that system is back to the
hadron gas phase. The disappearance of a single signature would not be enough to claim an
onset of deconfinement, because there are other phenomena not related to deconfinement which
may cause a similar e↵ect. However, the modification or disappearance of several signatures
simultaneously would definitely provide a compelling case. The particular observables identified
as the essential drivers of this part of the run are: constituent quark number scaling, hadron
suppression in central collisions characterized by Rcp, untriggered pair correlations in the space
of pair separation in azimuth and pseudorapidity and local parity violation in strong interactions.

The second goal is to find critical fluctuations, associated with a strong increase in the
susceptibilities, which are expected in the vicinity of CP. However, because the finite size e↵ects
could wash out the critical behavior, the search for evidence of the softening of EOS as a system
enters a mixed phase region implicitly associated with crossing first-order phase transition was

International Workshop on Discovery Physics at the LHC (Kruger2012) IOP Publishing
Journal of Physics: Conference Series 455 (2013) 012037 doi:10.1088/1742-6596/455/1/012037

2

Figure 1.8: The sketch of the QCD phase diagram [10]

1.5.1 Freeze-out parameters

Chemical freeze-out parameters, such as Tch and µB, can be extracted from particles yields
fit using the THERMUS package. Left hand side panel of Fig. 1.9 shows the chemical freeze-
out temperature as a function of baryon chemical potential using Grand-Canonical Ensemble
(GCE) [11]. The grey bands show the theoretical prediction ranges. In addition, kinetic freeze-
out temperature Tkin and transverse radial flow velocity β are obtained by fitting the pT spectra
with blast wave model. Right hand side panel of Fig. 1.9 shows the Tkin as a function of ⟨β⟩.
These results give us a lot of information about freeze-out line.
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FIG. 33: (Color online) Extracted chemical freeze-out tem-
perature versus baryon chemical potential for (a) GCE and
(b) SCE cases using particle yields as input for fitting. Curves
represent two model predictions [81, 82]. The grey bands rep-
resent the theoretical prediction ranges of the Cleymans et al.
model [81]. Uncertainties represent systematic errors.

baryon stopping at lower energies which may also be
centrality dependent. The strangeness chemical poten-
tial µS decreases with increasing energy and also shows
a weak increase from peripheral to central collisions. The
strangeness suppression factor γS accounts for the possi-
ble deviations of strange particle abundances from chem-
ical equilibrium; γS equal to unity means chemical equi-
libration of strange particles. The strangeness suppres-
sion factor γS for central collisions is almost the same and
close to unity for all the energies. However, for peripheral
collisions, it is less than unity and shows a slight energy
dependence, i.e. decreases with decreasing energy. For a
given energy, it increases from peripheral to central colli-
sions. The radius parameter R is related to the volume of
the fireball at chemical freeze-out and is obtained for the
yield fit case. For the BES energy range, the radius pa-

rameter shows no energy dependence. We note a similar
energy dependence of the volume at chemical freeze-out
per unit of rapidity dV/dy for the energy range similar
to BES, as discussed in Ref. [7]. For higher energies, the
dV/dy increases. The radius parameter shows centrality
dependence for a given energy, increasing from peripheral
to central collisions.

Figure 28 shows the ratio of chemical freeze-out param-
eters (Tch, µB, µS , γS , and R) between results from yield
fits to ratio fits in GCE plotted versus ⟨Npart⟩. We ob-
serve that the extracted freeze-out parameters for GCE
using ratio and yield fits are consistent with each other
within uncertainties. We found that the results using
particle ratios in the fits have large uncertainties com-
pared to those using particle yields. This may be because
the particle ratios used for fitting are constructed mostly
using common particle yields, say e.g. pions, which leads
to correlated uncertainties, but we treated all the ratio
uncertainties as independent in our fit.

Figure 29 shows the chemical freeze-out parameters
(Tch, µB, γS , and R) plotted versus ⟨Npart⟩ in SCE for
particle yields fit. The behavior of the freeze-out param-
eters is generally similar to what we discussed above for
GCE. However, Tch in SCE seems to be higher in pe-
ripheral collisions, but the centrality dependence is still
weak. Figure 30 shows the ratio of chemical freeze-out
parameters (Tch, µB, and γS) between yield and ratio fits
in SCE plotted versus ⟨Npart⟩. We observe that within
uncertainties, the results using yield and ratio fits are
similar except for γS in the most peripheral collision.

Figure 31 shows the ratio of chemical freeze-out pa-
rameters (Tch, µB, and γS) between GCE and SCE re-
sults obtained using the particle ratio fit plotted versus
⟨Npart⟩. Similarly, Fig. 32 shows the ratio of chemical
freeze-out parameters (Tch, µB, γS , and R) between GCE
and SCE results obtained using particle yields fit plotted
versus ⟨Npart⟩. We observe that the results are consis-
tent within uncertainties for GCE and SCE using both
the ratio and yield fits, except for γS in the most periph-
eral collision in case of yields fit.

Figure 33 shows the variation of chemical freeze-out
temperature with baryon chemical potential at various
energies and for three centralities 0–5%, 30–40% and 60–
80%. For 62.4 GeV, the three centralities shown are 0–
5%, 20–40% and 60–80%. The results are shown for both
GCE and SCE cases obtained using particle yields fit.
The curves represent two model predictions [81, 82]. In
general, the behavior is the same for the two cases, i.e.
a centrality dependence of baryon chemical potential is
observed which is significant at lower energies.

Next, we test the robustness of our results by com-
paring to results obtained with different constraints and
using more particles in the fit.
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ferent energies and centralities. The ⟨β⟩ decreases from
central to peripheral collisions indicating more rapid ex-
pansion in central collisions. On the other hand, Tkin

increases from central to peripheral collisions, consis-
tent with the expectation of a shorter-lived fireball in
peripheral collisions [94]. Furthermore, we observe that

these parameters show a two-dimensional anti-correlation
band. Higher values of Tkin correspond to lower values
of ⟨β⟩ and vice-versa.
Figure 38 (a) shows the energy dependence of kinetic

and chemical freeze-out temperatures for central heavy-
ion collisions. We observe that the values of kinetic
and chemical freeze-out temperatures are similar around√
sNN =4 – 5 GeV. If the collision energy is increased,

the chemical freeze-out temperature increases and be-
comes constant after

√
sNN =11.5 GeV. On the other

hand, Tkin is almost constant around the 7.7–39 GeV
and then decreases up to LHC energies. The separation
between Tch and Tkin increases with increasing energy.
This might suggest the effect of increasing hadronic inter-
actions between chemical and kinetic freeze-out at higher
energies [4]. Figure 38 (b) shows the average transverse
radial flow velocity plotted as a function of

√
sNN . The

⟨β⟩ shows a rapid increase at very low energies, then a
steady increase up to LHC energies. The ⟨β⟩ is almost
constant for the lowest three BES energies.

VII. SUMMARY AND CONCLUSIONS

We have presented measurements of identified particles
π,K, p, and p̄ at midrapidity (|y| < 0.1) in Au+Au col-
lisions at

√
sNN = 7.7, 11.5, 19.6, 27, and 39 GeV from

the beam energy scan program at RHIC. The transverse
momentum spectra of pions, kaons, protons, and anti-
protons are presented for 0–5%, 5–10%, 10–20%, 20–30%,
30–40%, 40–50%, 50–60%, 60–70%, and 70–80% colli-

Figure 1.9: Chemical freeze-out temperature versus baryon chemical potential for Grand Canon-
ical Ensemble (left). Kinetic freeze-out temperature versus β (right) [11].

1.5.2 Event-by-event fluctuations

Event-by-event fluctuation is a one of the powerful tool to characterize the thermodynamic
properties of the hot and dense QCD matter. It is said that the correlation length (ξ) diverges
at the CP [12]. ξ is related to the cumulants and moments of the distributions of conserved
quantities, such as net-baryon, net-charge and net-strangeness [13, 14]. The higher-order cu-
mulants are more sensitive to the CP than lower-order cumulants. In other words, higher-order
cumulants have a stronger dependence on ξ. Cumulants are proportional to the volume. There-
fore cumulant ratios are independent of the volume and usually measured as a observables.
Details about cumulants and moments are explained at the next chapter.

Experimentally, net-proton and net-Kaon are measured as a proxy for the net-baryon and
net-strangeness. STAR experiment published up to the fourth-order fluctuations of net-proton,
net-charge and net-Kaon distributions. Fig. 1.10 shows the published results of net-proton [15],
net-charge [16] and net-Kaon [17] cumulant ratios. In most cases, cumulants ratios are consistent
with statistical baseline. Therefore, it is difficult to extract the signal of phase transition from
these results.

However, an interesting energy dependence is observed when we extend the pT range by using
TOF detector. Fig. 1.11 shows the preliminary results of net-proton cumulants with transverse
momentum range 0.4 < pT < 2 GeV/c [18]. Momentum range of the published result which is
shown at the left hand side of the Fig. 1.10 is 0.4 < pT < 0.8 GeV/c, and only TPC is used
for PID. The κσ2 (= C4/C2) shows the non-monotonic behaviour with beam energy for 0-5%
centrality. At higher energy region, κσ2 is close to the unity. On the other hand, we observe
a minimum which is smaller than unity around

√
sNN = 20 GeV, and the observed value at√

sNN = 7.7 GeV is larger than unity.
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Fig. 5. Collision energy  dependence of σ 2 /M , Sσ and κσ 2 for net-charge distributions measured at RHIC for the top 
central 0–5% Au + Au collisions for available energies [14].

Fig. 6. Collision energy  dependence of Sσ , κσ 2 and Sσ/Skellam for net-proton distributions measured at RHIC for the 
top central 0–5% Au + Au collisions for available energies [15].
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top central 0–5% Au + Au collisions for available energies [15].
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Fig. 10. (Color online.) Collision centrality dependence of the κσ 2 for #NK distributions from Au+Au collisions at √sNN = 7.7–200 GeV. The error bars are statistical 
uncertainties and the caps represent systematic uncertainties. The Poisson (dashed-line) and NBD (blue-solid-line) expectations are also shown.

Fig. 11. (Color online.) Collision energy dependence of the values of M/σ 2, Sσ , 
κσ 2 for #NK multiplicity distributions from 0–5% most central and 70–80% pe-
ripheral collisions in Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 
and 200 GeV. The error bars are statistical uncertainties and the caps represent sys-
tematic uncertainties. The expectations from Poisson and NBD and the results of the 
UrQMD model calculations are all from the 0–5% centrality.

of the net-kaon (#NK ) fluctuations is less than that of the net-
proton (#Np) [53]. A much high statistics dataset is needed for 
the search of the QCD critical point with strangeness.

6. Summary

In heavy-ion collisions, fluctuations of conserved quantities, 
such as net-baryon, net-charge and net-strangeness numbers, are 
sensitive observables to search for the QCD critical point. Near the 
QCD critical point, those fluctuations are expected to have similar 

energy dependence behavior. Experimentally, the STAR experiment 
has published the energy dependence of the net-proton (proxy for 
net-baryon) [29] and net-charge [30] fluctuations in Au+Au colli-
sions from the first phase of the beam energy scan at RHIC. In 
this paper, we present the first measurements of the moments 
of net-kaon (proxy for net-strangeness) multiplicity distributions 
in Au+Au collisions from √sNN = 7.7 to 200 GeV. The measured 
M/σ 2 values decrease monotonically with increasing collision en-
ergy. The Poisson baseline for C1/C2 slightly underestimates the 
data. No significant collision centrality dependence is observed for 
both Sσ and κσ 2 at all energies. For C3/C2 (= Sσ ), the Poisson 
and NBD expectations are lower than the measured Sσ values at 
low collision energies. The measured values for C4/C2 (= κσ 2) are 
consistent with both the Poisson and NBD baselines within uncer-
tainties. UrQMD calculations for Sσ and κσ 2 are consistent with 
data for the most central 0–5% Au+Au collisions. Within current 
uncertainties, the net-kaon cumulant ratios appear to be mono-
tonic as a function of collision energy. The moments of net-kaon 
multiplicity distributions presented here can be used to extract 
freeze-out conditions in heavy-ion collisions by comparing to Lat-
tice QCD calculations. Future high statistics measurements with 
improved efficiency correction method will be made for fluctua-
tion studies in the second phase of the RHIC Beam Energy Scan 
during 2019–2020.
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Figure 1.10: Up to the fourth-order cumulant ratios of net-proton [15] (left), net-charge [16]
(middle) and net-Kaon [17] (right) as a function of beam energy from Beam Energy Scan I
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energies above 19.6 GeV, the values of v2
3{2} linearly increase with the log(psNN ) for all of the four centralities.

Figure 5 right shows psNN dependence of the v2
3{2} scaled by the charged particle multiplicity per participant pair

nch,PP =
2

Npart
dNch/d⌘ for three centralities. Experimentally, the nch,PP has been measured and monotonically increase

with psNN [23], which can be related to the energy density of the system. The v2
3{2}/nch,PP shows a local minimum

around 20 GeV, which is the consequence of a relatively flat trend for v2
3{2} and monotonically increasing trend for the

nch,PP in the energy range 7.7 <psNN< 20 GeV. Physics wise, the v2
3{2}/nch,PP should reflect the ability of the system

to convert the initial geometry fluctuations to the final state. Thus, the local minimum in v2
3{2}/nch,PP could indicate

an anomalous low pressure inside the matter created in the collisions near psNN=20 GeV, where a minimum is also
observed for the slope of net-proton directed flow. Apparently, these observations can be interpreted by softening of
equation-of-state due to presence of the first order phase transition. However, conclusions only can be made after
carrying out careful theoretical and model studies for the dynamical evolution of the system including the physics of
first order phase transition at finite µB.

2.5. Net-proton number fluctuations
Fluctuations of conserved quantities, such as baryon (B), charge (Q) and strangeness (S) numbers, have been

proposed as a sensitive probe to search for the signature of the QCD critical point in heavy-ion collisions [24]. These
fluctuations are sensitive to the correlation length (⇠) [24] and can be directly connected to the susceptibility of the
system computed in theoretical calculations, such as Lattice QCD [25, 26, 27] and HRG models [28]. The STAR
experiment has measured various order fluctuations of net-proton (Np � Np̄, proxy for net-baryon), net-charge and
net-kaon (proxy for net-strangeness) numbers in the Au+Au collisons at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and
200 GeV [29, 30, 31].
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Figure 6. (Color online) Left: Energy dependence of �2 of net-proton distributions and Middle: S� divided by Skellam (Poisson) expeca-
tions for 0-5%, 5-10% and 70-80% centralities of Au+Au collisions at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200 GeV measured by STAR.
The experimental data is compared with Poisson expectations (dashed lines) and the UrQMD transport model calculations (shade bands ). The
statistic and systematic errors are plotted as vertical bar and brackets, respectively. Right: A schematic sketch for theoretically predicted neg-
ative(red)/positive(blue) critical contribution regions for �2 near the QCD critical point and possible chemical freeze-out regions for Au+Au
collisions 14.5 (green), 16.5 (purple) and 19.6 GeV (black).

Figure 6 left shows the e�ciency corrected �2 of net-proton distributions as a function of psNN for 0-5%, 5-10%
and 70-80% centralities of Au+Au collisions measured by STAR [31, 32]. The protons and anti-protons numbers
are measured with transverse momentum 0.4 < pT < 2 GeV/c and at mid-rapidity |y| < 0.5. The �2 shows a clear
non-monotonic variation with psNN for 0-5% centrality with a minimum around 20 GeV. Above 39 GeV, the values of
�2 are close to the unity for both central and peripheral collisions and deviate significantly below unity for the 0-5%
most central collisions at 19.6 and 27 GeV, then become above unity at 0-5% centrality in the energies below 19.6
GeV. Another intriguing structure observed in psNN dependence for the �2 of net-proton distributions in Au+Au
collisons is the so called ”Oscillation”. Namely, the oscillation is a structure that represents two observations, the so

6

Figure 1.11: Net-proton cumulant ratios up to the fourth-order using TPC and TOF detector
[18]
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1.5.3 Other observables

The interesting behaviour seen at the net-proton results was also seen in different experimental
observables. The left hand side of Fig. 1.12 is the directed flow slope as a function of beam
energy with various particle species [19]. Energy dependence of net-proton and net-λ v1 slope
are similar to net-proton fluctuation results, and both results have minimum value around 20
GeV.

The right hand side of Fig. 1.12 shows the charged hadron yield as a function of centrality
[20]. Cronin effect is dominant at 7.7 and 11.5 GeV and the suppressions were observed down
to

√
sNN = 14.5 GeV. In other words, trends are changed around

√
sNN = 10-20 GeV.

the distributions grow with centrality. These trends are
made more transparent in Fig. 2 where a direct comparison
of the excitation functions for ðR2

out − R2
sideÞ is shown. We

attribute these qualitative patterns to the finite-size scaling
effects expected for the deconfinement phase transition
[cf. Eqs. (1)–(3)] and employ the excitation functions in a
more quantitative FSS analysis, as discussed below.
Validation tests for finite-size scaling were carried out

for the full set of excitation functions as follows. First, we
exploit the phenomenology of thermal models [38–41] for
the freeze-out region and associate (T; μB) combinations
with

ffiffiffiffiffiffiffiffi
sNN

p
. Second, we associate ðR2

out − R2
sideÞ with a

susceptibility, given its connection to the isoentropic
compressibility (κS). The three HBT radii Rout, Rside, and
Rrlong, which serve to characterize the space-time dimen-
sions of the emitting source, all show a linear dependence
on R̄ [27,28].
Subsequently, a Gaussian fit was used to extract

the peak positions, and widths of the excitation
functions, for different system sizes characterized by the
centrality selections indicated in Fig. 2; the magnitude of
ðR2

out − R2
sideÞ was evaluated at the extracted peak positions

as well. The solid and dashed curves shown in the figure
gives an indication of the quality of these fits.
The extracted fit parameters were tested for the charac-

teristic finite-size scaling patterns associated with the
deconfinement phase transition via Eqs. (1) and (3) with
L ¼ R̄,

ðR2
out − R2

sideÞmax ∝ R̄γ=ν; ð4Þ

ffiffiffiffiffiffiffiffi
sNN

p ðVÞ ¼ ffiffiffiffiffiffiffiffi
sNN

p ð∞Þ − k× R̄−ð1=νÞ; ð5Þ

with the aim of obtaining initial estimates for the critical
exponents ν and γ and the infinite volume

ffiffiffiffiffiffiffiffi
sNN

p ð∞Þ value
where the deconfinement phase transition first occurs; k is a
constant. Here, δs≡ ð ffiffiffiffiffiffiffiffi

sNN
p −

ffiffiffiffiffiffiffiffi
scepNN

p
Þ=

ffiffiffiffiffiffiffiffi
scepNN

p
gives a mea-

sure of the “distance” to the CEP.
Figure 3 illustrates the finite-size scaling test made for

the extracted peak positions [
ffiffiffiffiffiffiffiffi
sNN

p ðVÞ]. Figure 3(a) shows
the peak positions versus R̄ while Fig. 3(b) shows the same
peak positions versus 1=R̄1.5. The dashed curve in Fig. 3(b),
which represents a fit to the data in Fig. 3(a) with Eq. (5),
confirms the expected inverse power law dependence of
these peaks on R̄. The fit gives the values

ffiffiffiffiffiffiffiffi
sNN

p ð∞Þ ¼
47.5 $ 1.5 GeV and ν ¼ 0.67 $ 0.05. A similar value for ν
was obtained via an analysis of the widths obtained from
the Gaussian fits shown in Fig. 2. Note that this value offfiffiffiffiffiffiffiffi
sNN

p ð∞Þ is compatible with the striking pattern observed
in the excitation function for viscous damping [26,27].
This pattern is akin to that expected for ðη=sÞðT; μBÞ close
to the CEP [19,20].
Figure 4 illustrates the results of the finite-size scaling test

for ðR2
out − R2

sideÞmax. Figure 4(a) shows ðR2
out − R2

sideÞmax

versus R̄ while Fig. 4(b) shows the same data plotted versus
R̄2. The dashed curve in Fig. 4(b), which represents a fit to
the data in Fig. 4(a) with Eq. (4), confirms the expected
power law dependence of ðR2

out − R2
sideÞmax on R̄. Note that

the trend of this dependence is opposite to the inverse power
dependence shown in Fig. 3. The fit leads to the estimate
γ ¼ 1.15 $ 0.065. The indicated uncertainties for ν and γ
are derived from the fits.

FIG. 2 (color online). Comparison of ðR2
out − R2

sideÞ versusffiffiffiffiffiffiffiffi
sNN

p
for several centrality selections, as indicated. The data,

which are the same as those shown in Fig. 1, are taken from
Refs. [31,32]. The solid and dashed curves represent fits to the
combined data sets for each centrality, with the Gaussian fit
function ðR2

out − R2
sideÞ ¼ a þ b expð−0.5½ðx − cÞ=d'2Þ.

FIG. 3. (a) Peak position versus R̄. (b) Peak position versus
1=R̄1.5. The peak positions and associated error bars are obtained
from the Gaussian fits shown in Fig. 2. The dashed curve in (b)
shows the fit to the data in (a).
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degree calorimeter shower-maximum detectors [1]. We
have studied the sensitivity of dv1=dy to all experimental
cuts and selections, for both events and tracks, and inferred
systematic errors are plotted in Figs. 2 and 3.
Figure 1presentsv1ðyÞ at 10–40%centrality forK# ,K0

s ,ϕ,
Λ, and Λ̄. These measurements complement the correspond-
ing published information for protons, antiprotons, and
charged pions [7]. In the referenced v1 study, the overall
strength of the directed-flow signal near midrapidity was
characterized by the linear termF in a fit of the form v1ðyÞ ¼
Fy þ F3y3 [7]. This cubic fit reduces sensitivity to the
rapidity range over which the fit is performed, but becomes
unstable for low statistics, as is now the case for ϕ and Λ̄, and
to a lesser extent forΛ. Accordingly, the present analysis uses
a linear fit for all particle species at all beamenergies.The fit is
over jyj < 0.6 forϕ and over jyj < 0.8 for all other species. It
is evident from Fig. 1 that within errors the plotted species
have a near-linear v1ðyÞ over the acceptance of the STAR
detector. However, protons [7] show systematic deviations
from linearity and hence the proton dv1=dyjy¼ 0 is marginally
affected by changing the fit method. Hereafter, dv1=dy refers
to the slope obtained from the above linear fits.
The directed flow slope dv1=dy vs beam energy for p, p̄,

Λ, Λ̄, ϕ, K# , K0
s , and π# is presented in Figs. 2(a) and 2(b).

The proton and pion points in Fig. 2 differ slightly from
those in Ref. [7] in that a new measurement at

ffiffiffiffiffiffiffiffi
sNN

p ¼
14.5 GeV has been added, and the slope is now based on a
linear fit. We note four empirical patterns based on
Figs. 2(a) and 2(b). First, dv1=dy for Λ and p agree within
errors, and the Λ slope changes sign in the same region as
protons (near

ffiffiffiffiffiffiffiffi
sNN

p ¼ 11.5 GeV). However, the Λ errors
are not small enough to determine whether the minimum
observed in the proton slope near

ffiffiffiffiffiffiffiffi
sNN

p ¼ 15–20 GeValso
occurs for Λ. Second, dv1=dy for Kþ and K− are both
negative at all energies and are close to each other except at
the lowest energy, while dv1=dy for K0

s is everywhere
consistent within errors with the average of Kþ and K−. It

was found previously that dv1=dy for πþ and π− is likewise
close over these energies and is always negative. Third, the
slope for Λ̄ is negative throughout and is consistent within
errors with p̄ [7]. Fourth, at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 GeV and above,
the ϕ slope has much larger magnitude than other
mesons (pions and kaons) and is close to p̄ and Λ̄. At
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sNN

p ¼ 62.4 GeVhas a large uncertainty and is not plotted. Panel
(c) presents net protons, net Λ’s, and net kaons. The bars are
statistical errors, while the caps are systematic uncertainties. Data
points are staggered horizontally to improve visibility.
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These measurements of πþð−Þ RCP are consistent with
measurements of π0 RAA in Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ≥
39 GeV [47] and with π0 RCP in Pbþ Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 17.3 GeV [48]. However, while earlier measure-
ments demonstrated the disappearance of net suppression,
the results presented here extend to lower collision energies
where a strong net enhancement is observed.
A measurement of RCP takes the ratio of Ncoll-scaled

spectra from two different centralities [49]. A differential
method for studying jet quenching is to look at how the
Ncoll-scaled spectra trend with centrality for a high-pT
bin via

YðhNpartiÞ ¼
B

hNcolli
d2N
dpTdη

ðhNpartiÞ; ð2Þ

where B is a normalization term defined such that Yð50Þ¼1
for each energy and is used to simplify the comparison from
one energy to the next. This is equivalent to taking the
numerator from RCP and plotting it versus the centrality so
that the peripheral bin contents are in the first bin at low
hNparti and the central bin’s contents are in the last point at
high hNparti. Examining the full centrality evolution allows
for the disentanglement of whether the processes leading to
enhancement increase faster or slower than the processes
leading toward suppression as a function of the centrality.
While both jet quenching and enhancement effects increase
in strength with increasing hNparti, if there is a faster
growth of quenching, it would manifest itself in decreasing
YðhNpartiÞ trends.
Figure 3 shows the charged hadron yield per binary

collision as a function of hNparti for 3 < pT < 3.5 GeV=c
in the left panel and for 4 < pT < 4.5 GeV=c in the right
panel. The left panel corresponds to the highest pT bin of
the

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7 GeV data and the right panel to the highest
pT bin of the

ffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 GeV data. The 200 GeV points
are from STAR data taken in 2010 and analyzed with the
same procedure as the BES points. At

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV,
YðhNpartiÞ decreases monotonically with increasing Npart.
This implies that the increase in jet quenching from
peripheral to central collisions is stronger than the increase
for effects which lead to enhancement. For a given hNparti,
YðhNpartiÞ always decreases with increasing

ffiffiffiffiffiffiffiffi
sNN

p
. Atffiffiffiffiffiffiffiffi

sNN
p ¼ 7.7 GeV, YðhNpartiÞ increases monotonically with
increasing Npart. At 11.5 GeV, YðhNpartiÞ still increases
monotonically with increasing Npart but less rapidly
than at 7.7 GeV. As

ffiffiffiffiffiffiffiffi
sNN

p
increases, a peak develops in

YðhNpartiÞ which persists until
ffiffiffiffiffiffiffiffi
sNN

p ¼62.4GeV. Forffiffiffiffiffiffiffiffi
sNN

p ≥14.5GeV, a suppression in YðhNpartiÞ is observed
for hNparti ≈ 350 relative to lower hNparti bins. Finally, atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, YðhNpartiÞ is suppressed for hNparti ≥
50 and decreases monotonically with increasing hNparti.
The

ffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 GeV data in the right panel in Fig. 3

shows a clear peak in YðhNpartiÞ at hNparti ≈ 230. This
implies that enhancement effects increase faster than
suppression effects for hNparti < 250 at this energy.
However, for hNparti > 250, suppression effects increase
at a similar rate or slightly faster than enhancement effects.
In fact, if the systematic errors are taken to be 100%
correlated, which is reasonable over this Npart range, then
the yields at hNparti ≈ 350 are significantly suppressed
relative to the yields at hNparti ≈ 230. This may be
interpreted as medium-induced jet quenching decreasing
high-pT yields in central collisions at

ffiffiffiffiffiffiffiffi
sNN

p ≳ 14.5 GeV.
As we move to higher energies, we find evidence for jet
quenching in less central collisions. This does not exclude
the possibility of QGP formation in the 7.7 and 11.5 GeV
data sets but simply that enhancement effects increase
faster than quenching effects for all centralities at these
energies. This hadronic dominance at lower energies is
consistent with measurements of other QGP signatures in
the BES [19,20,50].
In summary, net high-pT suppression persists for

charged hadron RCP for
ffiffiffiffiffiffiffiffi
sNN

p
> 39 GeV. Mesons show

a trend from RCP < 1 at the highest energies to RCP > 1 at
the lowest energies, while baryons show an RCP > 1 at high
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Figure 1.12: Directed flow slope versus beam energy in Au+Au collisions (left) [19]. Charged
hadron Y(⟨Npart⟩) for two ranges of pT (right) [20].

Fig. 1.13 shows the HBT radii R2
out − R2

side as a function of beam energy for various cen-
tralities [21]. Maximum value was observed around 20 GeV in all centralities.

We introduced the BES-I results of various observables and a lot of interesting behaviour
can be observed at lower energy regions. Beam Energy Scan II (BES-II) program has been
conducted to investigate low energy with high statistics from 2019.
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the distributions grow with centrality. These trends are
made more transparent in Fig. 2 where a direct comparison
of the excitation functions for ðR2

out − R2
sideÞ is shown. We

attribute these qualitative patterns to the finite-size scaling
effects expected for the deconfinement phase transition
[cf. Eqs. (1)–(3)] and employ the excitation functions in a
more quantitative FSS analysis, as discussed below.
Validation tests for finite-size scaling were carried out

for the full set of excitation functions as follows. First, we
exploit the phenomenology of thermal models [38–41] for
the freeze-out region and associate (T; μB) combinations
with

ffiffiffiffiffiffiffiffi
sNN

p
. Second, we associate ðR2

out − R2
sideÞ with a

susceptibility, given its connection to the isoentropic
compressibility (κS). The three HBT radii Rout, Rside, and
Rrlong, which serve to characterize the space-time dimen-
sions of the emitting source, all show a linear dependence
on R̄ [27,28].
Subsequently, a Gaussian fit was used to extract

the peak positions, and widths of the excitation
functions, for different system sizes characterized by the
centrality selections indicated in Fig. 2; the magnitude of
ðR2

out − R2
sideÞ was evaluated at the extracted peak positions

as well. The solid and dashed curves shown in the figure
gives an indication of the quality of these fits.
The extracted fit parameters were tested for the charac-

teristic finite-size scaling patterns associated with the
deconfinement phase transition via Eqs. (1) and (3) with
L ¼ R̄,

ðR2
out − R2

sideÞmax ∝ R̄γ=ν; ð4Þ

ffiffiffiffiffiffiffiffi
sNN

p ðVÞ ¼ ffiffiffiffiffiffiffiffi
sNN

p ð∞Þ − k× R̄−ð1=νÞ; ð5Þ

with the aim of obtaining initial estimates for the critical
exponents ν and γ and the infinite volume

ffiffiffiffiffiffiffiffi
sNN

p ð∞Þ value
where the deconfinement phase transition first occurs; k is a
constant. Here, δs≡ ð ffiffiffiffiffiffiffiffi

sNN
p −

ffiffiffiffiffiffiffiffi
scepNN

p
Þ=

ffiffiffiffiffiffiffiffi
scepNN

p
gives a mea-

sure of the “distance” to the CEP.
Figure 3 illustrates the finite-size scaling test made for

the extracted peak positions [
ffiffiffiffiffiffiffiffi
sNN

p ðVÞ]. Figure 3(a) shows
the peak positions versus R̄ while Fig. 3(b) shows the same
peak positions versus 1=R̄1.5. The dashed curve in Fig. 3(b),
which represents a fit to the data in Fig. 3(a) with Eq. (5),
confirms the expected inverse power law dependence of
these peaks on R̄. The fit gives the values

ffiffiffiffiffiffiffiffi
sNN

p ð∞Þ ¼
47.5 $ 1.5 GeV and ν ¼ 0.67 $ 0.05. A similar value for ν
was obtained via an analysis of the widths obtained from
the Gaussian fits shown in Fig. 2. Note that this value offfiffiffiffiffiffiffiffi
sNN

p ð∞Þ is compatible with the striking pattern observed
in the excitation function for viscous damping [26,27].
This pattern is akin to that expected for ðη=sÞðT; μBÞ close
to the CEP [19,20].
Figure 4 illustrates the results of the finite-size scaling test

for ðR2
out − R2

sideÞmax. Figure 4(a) shows ðR2
out − R2

sideÞmax

versus R̄ while Fig. 4(b) shows the same data plotted versus
R̄2. The dashed curve in Fig. 4(b), which represents a fit to
the data in Fig. 4(a) with Eq. (4), confirms the expected
power law dependence of ðR2

out − R2
sideÞmax on R̄. Note that

the trend of this dependence is opposite to the inverse power
dependence shown in Fig. 3. The fit leads to the estimate
γ ¼ 1.15 $ 0.065. The indicated uncertainties for ν and γ
are derived from the fits.

FIG. 2 (color online). Comparison of ðR2
out − R2

sideÞ versusffiffiffiffiffiffiffiffi
sNN

p
for several centrality selections, as indicated. The data,

which are the same as those shown in Fig. 1, are taken from
Refs. [31,32]. The solid and dashed curves represent fits to the
combined data sets for each centrality, with the Gaussian fit
function ðR2

out − R2
sideÞ ¼ a þ b expð−0.5½ðx − cÞ=d'2Þ.

FIG. 3. (a) Peak position versus R̄. (b) Peak position versus
1=R̄1.5. The peak positions and associated error bars are obtained
from the Gaussian fits shown in Fig. 2. The dashed curve in (b)
shows the fit to the data in (a).
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Figure 1.13: Comparison of (R2
out −R2

side) versus beam energy in Au+Au collisions [21].

1.6 Thesis motivation

This thesis is composed of measurements of up to the sixth-order fluctuations, ∆η dependence
of net-charge distributions and the study of the volume fluctuation correction. In this section,
three different motivations are introduced.

1.6.1 Sixth-order fluctuations

As we said at previous section, STAR published up to the fourth-order cumulants of net-proton,
net-charge and net-Kaon distributions for BES-I energies. Recently, it is suggested that sixth-
order fluctuation have an important role to figure out the QCD phase transition. The left
panel of Fig. 1.14 shows the χ6/χ2, which corresponds to C6/C2 experimentally, as function
of temperature over pseudo-critical temperature Tpc from theoretical predictions using PQM
model [22]. The right panel of Fig. 1.14 shows the values of χ6/χ2 and χ4/χ2 of net-baryon
and net-charge fluctuation. The values of the first low are calculated from Hadron Resonance
Gas model. The values for second and third low show the cumulant ratios at hadron phase and
chiral crossover temperature respectively. If crossover transition occurred, sixth-order cumulant
ratios of conserved quantities have negative values. Fig. 1.15 shows the χ6/χ2 of net-baryon
distribution from Lattice QCD calculation and negative χ6/χ2 was also seen around Tc [23].
Therefore, sixth-order cumulants of the conserved quantities may be the good observables to
search for the signal from the crossover transition.

Recently, STAR reported the sixth-order cumulants of the net-proton distributions which is
shown at Fig. 1.16. The left panel of Fig. 1.16 shows the centrality dependence of net-proton
cumulants at

√
sNN = 200 GeV [24] ,and the right hand side panel is 0-40% merged results
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Figure 1.14: χ6/χ2 and χ4/χ2 versus temperature (left). Values of χ6/χ2 and χ4/χ2 of net-
baryon and net-charge fluctuation (right) [22]
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Figure 3. Left: The ratio of fourth and second order cumulants of net-baryon number fluctuations (�B

4 /�
B

2 ) versus temperature.
Right: same as the left hand side, but for the ratio of sixth and second order cumulants of net-baryon number fluctuations
(�B

6 /�
B

2 ). The boxes indicate the transition region, Tc = (154± 9) MeV. Grey bands show continuum estimate.

temperature values below T = 175 MeV. Furthermore, we used data on 643 ⇥ 16 lattices at a corresponding set of
low temperature values. These data are taken from an ongoing calculation of higher order susceptibilities performed
by the HotQCD Collaboration2. This allowed us to update the continuum extrapolation for �B

2 given in [20]. The
new continuum extrapolation shown in Fig. 2 is consistent with our earlier results, but has significantly smaller errors
in the low temperature region. In the right hand part of this figure we compare the continuum extrapolated lattice
QCD data for �B

2 with HRG model calculations. It is obvious that the continuum extrapolated QCD results overshoot
results obtained from a conventional, non-interacting HRG model calculations with resonances taken from the particle
data tables (PDG-HRG) and treated as point-like excitations. We therefore compare the QCD results also with a
HRG model that includes additional strange baryons,which are not listed in the PDG but are predicted in quark
models and lattice QCD calculations. We successfully used such an extended HRG model (QM-HRG) in previous
calculations [5, 6]. As can be seen in Fig. 2 (left), continuum extrapolated results for �B

2 agree well with QM-HRG
calculations.

As can be seen in the left hand part of Fig. 3, the ratio �B

4 /�
B

2 approaches unity with decreasing temperature, but is
small at high temperatures where the leading order correction is large. The relative contribution of the NLO correction
thus is largest in the hadronic phase, where �B

4 /�
B

2 ' 1. For temperatures T<⇠155 MeV we find �B

4 /�
B

2  0.8. The
relative contribution of the NLO correction to the µB-dependent part of the pressure (number density) in the crossover
region and below thus is about 8% (16%) at µB/T = 1 and rises to about 33% (66%) at µB/T = 2. At temperatures
larger than 180 MeV the relative contribution of the NLO correction to pressure and number density at µB/T = 2 is
less than 8% and 16%, respectively.

The relative contribution of the O(µ̂6
B
) correction, �B

6 /�
B

2 , is shown in the right hand part of Fig. 3. The ideal gas
limit for this ratio vanishes. Obviously the ratio is already small for all temperatures T > 180 MeV, i.e. �B

6 /�
B

2  0.5.
Consequently, for µ̂B = 2 the correction to the leading order result is less than 2.2% for the µB-dependent part of
the pressure and less than 7% for the net baryon-number density. At lower temperatures the statistical errors on
current results for �B

6 /�
B

2 are still large. However, a crude estimate for the magnitude of this ratio at all temperatures
larger than 130 MeV suggests,

���B

6 /�
B

2

��  3. In the low temperature, hadronic regime and for µ̂B = 2 the O(µ̂6
B
)

corrections to the µB-dependent part of the pressure can be about 13%. However, in the total pressure, which also
receives large contributions from the meson sector, this will result only in an error of less than 3%. In the calculation
of the net baryon-number density, on the other hand, the current uncertainty on O(µ̂6

B
) expansion coe�cients results

in errors of about 40% at temperatures below T ' 155 MeV. In fact, as discussed already in section II, higher order
corrections are larger in the Taylor expansion of the number density. From Eq. 25 it follows for the ratio of NLO
and LO expansion coe�cients, NB

5 /NB

1 = 3P6/P2. Clearly better statistics is needed in the low temperature range
to control higher order corrections to nB/T 3.

In Fig. 4 we show results for the µB-dependent part of the pressure (left) and the net baryon-number density (right)
calculated from Taylor series up to and including LO, NLO and NNLO contributions, respectively. This suggests that

2
We thank the HotQCD Collaboration for providing access to the second order quark number susceptibilities.

Figure 1.15: χ6/χ2 versus temperature from Lattice QCD calculation. [23]
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which are compared with UrQMD model and
√
sNN = 54 GeV results [25].

The negative signal at
√
sNN = 200 GeV and the positive signal at

√
sNN = 54 GeV were

observed in most central collisions. However, statistical uncertainties are large especially in
central collisions. Therefore, it is not enough to conclude that these results imply the signal
from the crossover. It is important to discuss the results not only net-proton but also net-
charge fluctuation. In this thesis, centrality dependence of up to the sixth-order cumulants of
net-charge distributions are shown, and compare to net-proton results.
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Fig. 1. Energy dependence of the cumulants and correlation functions of proton multiplicity distribution in central Au+Au collisions.

3.2. Constraining the QCD equation of state near µB = 0 region
Lattice QCD calculations are exact at µB = 0, where it predicts a crossover from the QGP phase to the

hadron gas phase in the QCD phase diagram [1]. In order to stretch the calculations to finite µB, the current
approach is to use a Taylor expansion about µB = 0. A constraint on the equation of state from Lattice QCD
can be achieved by using the ratio of the sixth-order to the second-order baryon susceptibilities [13]. In
addition, Lattice QCD also predicts the ratio of the sixth-order to second-order cumulant of baryon number
to remain negative at the chiral transition temperature [14]. Combining the data from years 2010 and 2011
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Fig. 2. Centrality dependence of the sixth-order cumulants and the ratio of sixth-order to second-order cumulants of the net-proton
multiplicity distribution in Au+Au collisions at

√
sNN = 200 GeV.

for Au+Au collisions at 200 GeV, we have around 200 M events for 0-10% central collisions (of which
around 160 M events are from year 2010) and around 650 M events for 10-80% central collisions. The
left panel of Fig.2 shows the values of the sixth-order cumulants, while the right panel shows the ratio of
sixth-order to second-order cumulants of the net-proton multiplicity distribution as a function of number of
participants for transverse momenta between 0.4 and 2 GeV/c at midrapidity. The square markers represent
the values measured using 0-5% central events from the data from the year 2010 only. For central collisions,
we find the ratios of the sixth-order to the second-order cumulants of the net-proton multiplicity distributions
to be negative, with large statistical uncertainties. This is consistent with the expectations from Lattice
QCD [2].

The transverse-momentum and rapidity dependence of the ratios of the sixth-order to the second-order

R. Esha / Nuclear Physics A 967 (2017) 457–460 459

Toshihiro Nonaka, QNP2018, Tsukuba, Japan �23
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✓ 200 GeV results are consistent with LQCD results.
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Figure 1.16: C6/C2 of net-proton distributions as a function of centrality at
√
sNN = 200 GeV

(left) [24] and 0-40% merged results at
√
sNN = 54 GeV and 200 GeV (right) [25]

As it is said at the previous section, up to the fourth-order cumulants of net-charge dis-
tributions have already published. However, improvements of analysis and correction methods
are necessary from published method in sixth-order cumulant analysis. In published net-charge
results, averaged efficiencies between positively and negatively charged particles and among
different particles species are used for efficiency corrections. Therefore, Particle Identification
(PID) had not been done in published paper. However, it is said that efficiency correction
using averaged efficiency would give artificial results when the distribution do not follow Pois-
son distribution. At Fig. 1.17 shows the deviation of the efficiency corrected cumulants with
averaged efficiency [26]. In addition, these deviation are larger with the order of the cumulants.
Therefore, sixth-order cumulants are largely affected by this effect, and we should correct the
experimental efficiency separately if efficiencies are different among different phase space.

For example, efficiencies are different among different particle species (π±,K±, p and p̄),
between low-pT and high-pT region, and positively and negatively charged particles [27]. In
this thesis, PID has been done, and the efficiency corrections have been done separately with
12 efficiency bins using factorial cumulant method [26] whereas there is only 1 efficiency bin in
published paper.
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9

and their cumulants are given by

hNm
A ic = hNm

B ic = Cm. (70)

We are interested in the cumulants of the total particle number N = NA + NB. Due to the additive property of
cumulants for independent stochastic variables [7], cumulants of N are given by

Km ⌘ hNmic = hNm
A ic + hNm

B ic = 2Cm. (71)

Because of the e�ciency loss, the observed particle numbers nA and nB have di↵erent distributions from those of NA

and NB. The cumulants of nA and nB are represented by Cm by the inverse procedure of Eqs. (26) and (27) [7]. For
the first and second orders we have

hnXi = "XC1, (72)

hn2
Xic = "2XC2 + "X(1� "X)C1, (73)

with X =A and B. By substituting Eqs. (72) and (73) into Eqs. (58) and (59) with M = 2, the correct value of Km

is recovered.
Now, we consider a case that the e�ciency correction is performed by regarding n = nA + nB as a particle number

described by a single distribution function measured by an averaged e�ciency " = ("A + "B)/2. Then, the e�ciency
correction would be performed by substituting n = nA + nB and p = " into the result in Sec. II such as Eqs. (26) and
(27). For the first order, the result of this e�ciency correction is

K(ave)
1 = hN1i+ hN2i =

hn1i
"

+
hn2i
"

=
"1C1

"
+

"2C1

"
= 2C1. (74)

Therefore, the correct cumulant Eq. (71) is recovered to this order. This, however, is not the case for higher order

cumulants. By denoting the deviation of the reconstructed cumulant with average e�ciency K(ave)
m from the original

one as

�Km = Km �K(ave)
m = 2Cm �K(ave)

m , (75)

�Km is calculated to be

�K2 =
1

2

✓
�"

"

◆2

(C2 � C1), (76)

�K3 =
3

2

✓
�"

"

◆2

(C3 � 2C2 + C1), (77)

�K4 =
1

2

✓
�"

"

◆2

(6C4 � 18C3 + 19C2 � 7C1) +
1

8

✓
�"

"

◆4

(C4 � 6C3 + 11C2 � 6C1), (78)

with �" = "A � "B. The nonzero �Km shows that the reconstructed cumulant does not agree with the original one.
These results clearly show that the use of the averaged e�ciency gives rise to a deviation in the result of the e�ciency
correction. Only for Poisson distribution (C1 = C2 = ... = Cm), the deviation vanishes.
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FIG. 1. Deviation of the e�ciency corrected values of cumulants using averaged e�ciency �Km assuming (a) Gauss distribution
and (b) distribution that has 5% smaller cumulants than Poisson distribution.
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FIG. 1. Deviation of the e�ciency corrected values of cumulants using averaged e�ciency �Km assuming (a) Gauss distribution
and (b) distribution that has 5% smaller cumulants than Poisson distribution.Figure 1.17: Deviations of the efficiency corrected values of cumulants using averaged efficiency

assuming the distribution which has 5% smaller cumulants than Poisson distributions [26]

1.6.2 D-measure and ∆η dependence

Fig. 1.18 shows the D-measure which corresponds to the second-order cumulant over entropy
density as a function of ∆η in Pb-Pb collision at

√
sNN = 2.76 TeV from ALICE experiment

[28]. ∆η represents the rapidity window. For example, −0.5 < η < 0.5 corresponds to ∆η = 1
and ∆η was fixed to 1 in published results at Fig. 1.10. The value of D-measure was estimated
by several theoretical calculations, and D-measure takes D = 3-4 in hadron gas and D = 1-1.5
in QGP.

may not be responsible for the centrality dependence of the
D measure.

The measured fluctuations may get diluted during the
evolution of the system from hadronization to kinetic
freeze-out because of the diffusion of charged hadrons in
rapidity. This has been addressed in Refs. [8,9], where a
diffusion equation has been proposed to study the depen-
dence of the net-charge fluctuations on the width of the
rapidity window. Taking the dissipation into account, the
asymptotic value of fluctuations may be close to the pri-
mordial fluctuations. This has been explored for the
ALICE data points by plotting hNch i!corr

ðþ#;dyn Þ and D as a

function of !" for three centrality bins, as shown in Fig. 3.
We observe that, for a given centrality bin, the D measure
shows a strong decreasing trend with the increase of!". In
fact, the curvature of D has a decreasing slope with a
flattening tendency at large !" windows. Following the
prescriptions of [8,9], we fit the data points with the func-

tional form, erfð!"=
ffiffiffi
8

p
#fÞ, which represents the diffusion

in rapidity space. Here, #f characterizes the diffusion at

freeze-out. The resulting values of #f are 0:41% 0:05,
0:44% 0:05, and 0:48% 0:07 for the 0%–5%, 20%–30%,
and 40%–50% centralities, respectively. The fitted curves
are shown as solid lines in Fig. 3. The dashed lines are
extrapolations of the fitted curves to higher !", which
yield the asymptotic values of D . For the top 5% centrality,
the measured values of D are 2:6% 0:02ðstatÞ % 0:15ðsystÞ
for !"¼1 and 2:3%0:02ðstatÞ%0:21ðsystÞ for !" ¼ 1:6.
The extrapolated value of D is 2:24% 0:09ðstatÞ%
0:21ðsystÞ.

The evolution of the net-charge fluctuations with beam
energy can be studied by combining the ALICE data with

those of the STAR experiment [12] at RHIC. In Fig. 4, we
present the values of hNch i!corr

ðþ#;dyn Þ (left axis) and D

(right axis) for the top central collisions from ALICE atffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV and, for STAR, Au-Au collisions at
four different energies. The ALICE data points correspond
to !" ¼ 1 and 1.6, whereas, for STAR, the values
for !" ¼ 1 are shown. For the STAR data,
ðdNch =d"Þ!corr

ðþ#;dyn Þ are plotted instead of hNch i!corr
ðþ#;dyn Þ,

as the dNch =d" values are approximately equal to hNch i for
!" ¼ 1 at central rapidity. The theoretical predictions for
a HG and a QGP are indicated in the figure. In the absence
of any dynamic model, these predictions do not have a
dependence on the beam energy.
Figure 4 shows a monotonic decrease in the magnitude

of the net-charge fluctuations with increasing beam energy.
For the top RHIC energy of

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, the mea-
sured value of fluctuation is observed to be close to the
HG prediction, whereas, at lower energy, the results are
above the HG value. At

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV, we observe
significantly lower fluctuations compared to those of
lower energies.
In summary, we have presented the first measurements

of dynamic net-charge fluctuations at the LHC in Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV in terms of !ðþ#;dyn Þ and
their corrected values !corr

ðþ#;dyn Þ (corrected for charge con-

servation and finite acceptance effects). The results for pp
collisions at the same center-of-mass energy are found to
be in agreement with hadron gas prediction. The values of
!ðþ#;dyn Þ and !corr

ðþ#;dyn Þ are seen to be negative in all cases,

indicating the dominance of the correlation of positive and
negative charges. A decrease in fluctuations is observed
while going from peripheral to central collisions. The D
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result for !" ¼ 1:6 is also shown. Both statistical (error bars)
and systematic (boxes) errors are plotted.
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Figure 1.18: D-measure as a function of ∆η for three centralities in Pb-Pb collision at√
sNN = 2.76 TeV from ALICE experiment[28]

Fig. 1.18 shows that D-measure decreases with rapidity window ∆η, and also decreased
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when going from peripheral to central collisions. Therefore, D-measure is close to theoretically
predicted value of QGP at larger ∆η, and close to hadron region at smaller ∆η.

This trend, where D-measure decreases with ∆η, was studied theoretically and well described
by the diffusion master equation (DME) model [29, 30]. Fig. 1.19 shows an illustration for the
DME model. In one dimensional case, we divide the coordinate into discrete cells. We set the
length of each cell as a and index the cells by an integer m. The number of particles of cell m is
donated as nm and P (n, t) is defined as probability function with n = (· · · , nm−1, nm, nm+1, · · · )
at time t. We introduce γ which is probability that each particle moves to adjacent cells per
unit time.

Figure 11: System described by the diffusion master equation Eq. (164).

down. The growth of the fluctuation of σ is investigated in terms of the correlation length of the σ field
in Refs. [156, 157]. These studies suggest that the growth of the correlation length is limited to ξ ≃ 2
fm due to the critical slowing down. The time evolution of the third and fourth order cumulants of
σ near the critical point is discussed in Ref. [158]. To describe the time evolution of conserved-charge
fluctuations near the critical point, the coupling of σ with the conserved charge [106, 107] should play
the crucial role. Attempts to model the time evolution of fluctuations incorporating both the σ and
the conserved-charge fields in a stochastic formalism are made in Refs. [159, 160, 161, 162]. When
the hot medium undergoes a first-order phase transition, the fluctuation would be enhanced owing to
domain formation [162] and spinodal instabilities [163, 164, 165]. Understanding these highly dynamical
processes, especially the growth of fluctuations and their effects on experimental signals, are interesting
future subjects.

5.4 ∆η dependence of higher order cumulants

In Sec. 5.2, we have seen that the SDE is suitable to describe the diffusive process of Gaussian fluc-
tuations. As discussed there, however, in this model it is difficult to describe nonzero non-Gaussian
fluctuations in equilibrium. Accordingly, this formalism is not suitable to describe the approach of
non-Gaussian cumulants toward nonzero equilibrated value.

For a description of the time evolution of non-Gaussian cumulants in diffusive systems, a model
called the diffusion master equation (DME) [72] is employed in Refs. [144, 136, 69]. A characteristics
of these studies is that the discrete nature of particle number is explicitly treated. In the DME for one
dimensional problem, the coordinate is divided into discrete cells with an equal length a. We denote
the number of particles in each cell, labeled by an integer m, as nm. We then introduce the probability
distribution function P (n, t) that each cell contains nm particles with n = (· · · , nm−1, nm, nm+1, · · · )
at time t. Finally, we assume that each particle moves to adjacent cells with a probability γ per unit
time, as a result of microscopic interactions and random motion. The probability P (n, t) then follows
the differential equation

∂τP (n, τ) =γ(t)
∑

m

[(nm + 1){P (n+ em − em+1, τ) + P (n+ em − em−1, τ)}

− 2nmP (n, τ)], (164)

where em is the vector that all components are zero except for mth one, which takes unity. Equation
Eq. (164) is referred to as the DME [72].

The time evolution of the cumulants and correlation functions of particle number described by the
DME Eq. (164) can be solved analytically [68]. To obtain the solution for arbitrary initial conditions, it is
convenient to use the formula of superposition of probability distribution functions given in Appendix A
[68, 69]. One then takes the continuum limit, a → 0, of this solution. It is shown that the time evolution
of average density ⟨n(x, t)⟩ after taking the continuum limit is consistent with the one in the diffusion
equation Eq. (138) with the diffusion constant D(t) = γ(t)a2.
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Figure 1.19: System described by diffusion master equation [29][30]

Then we can write the probability function P (n, t) as

∂τP (n, τ) =γ(t)
∑
m

[(nm + 1) {P (n+ em − em+1, τ) + P (n+ em − em−1, τ)}

− 2nmP (n, τ)],

(1.15)

where em is the vector that all components are zero except em = 1. Then we take continuous
limit a → 0.

Fig. 1.20 shows the D-measure as a function of ∆η for two initial conditions and D-measure
was observed to decrease with expending ∆η. Not only up to the second-order fluctuation,
such as D-measure, but also third and fourth-order cumulants are calculated by the model.
Fig. 1.21 and Fig. 1.22 show the ∆η dependence of third and fourth-order cumulants that are
normalized by C1 and Nch respectively for several initial parameters which are a, b, c and Dn.
Dn is nth-order susceptibilities, and there are a lot of results which correspond to the different
initial conditions. Thus, it is important to determine the initial parameters by comparing with
the experimental results.

STAR published D-measure results [31] at
√
sNN = 19.6, 62.4, 130, and 200 GeV. However,

∆η dependence of higher-order net-charge cumulants and D-measure at lower energy region
have not measured yet. In this thesis, ∆η dependence of D-measure and up to the fourth-order
cumulants of net-charge distribution at BES-I energy (

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4

and 200 GeV) are shown and compare with the previous ALICE results and the theoretical
predictions.
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where we have introduced the following functions:

G2,0(X) = 1− F2(X), G2,1(X) = F2(X), (94)

G3,0(X) = 1− 3F2(X) + 2F3(X), G3,1(X) = F3(X), (95)

G3,2(X) = 3(F2(X)− F3(X)), (96)

G4,0(X) = 1− 7F2(X) + 12F3(X)− 6F4(X), G4,1(X) = F4(X), (97)

G4,2(X) = 4(F2(X)− 3F3(X) + 2F4(X)), (98)

G4,3(X) = 6(F3(X)− F4(X)), G4,4(X) = 3(F2(X)− 2F3(X) + F4(X)). (99)

In Fig. 3, we show 1/X = ∆η/d(τ) dependence of the functions in Eqs. (94) - (99). The figure shows that these
functions behave differently as functions of∆η/d(τ). The structures of these functions are responsible for characteristic
behaviors of ∆η dependences of the cumulants discussed in the next subsections.

C. Second order cumulant and diffusion distance

Now, let us examine ∆η/d(τ) = 1/X dependence of the normalized cumulants Eq. (90). We first consider the the
second order one R2. As in Eq. (91), R2 depends on the initial condition only through D2. In Fig. 4 we show the
∆η/d(τ) dependence of R2 for D2 = 0 and 0.5.
Since we plot the ∆η dependences of the cumulants as functions of ∆η/d(τ) throughout this section, it is instructive

to give a rough estimate on the value of d(τ) at this point by comparing Fig. 4 with the existing experimental results.
The second order cumulant of net-electric charge has been observed by ALICE collaboration [5]. In Ref. [5], the result
is plotted using the quantity called the D-measure [9], which is related to R2 as

D = 4R2, (100)

provided that Qnet is the net-electric charge. By comparing the result in Fig. 4 with Fig. 3 in Ref. [5], one can
constrain the values of D2 and d(τ) [21]. In Ref. [8], the value of D2 is estimated as D2 = 0.5. Using this value of D2

and Fig. 3 in Ref. [5] one can estimate [21]

d(τ) = 0.3 ∼ 0.5. (101)

This result shows that the maximum rapidity window of the ALICE detector, ∆ηmax = 1.6 [5], corresponds to

∆ηmax/d(τ) = 3.2 ∼ 5.3. (102)

The ALICE detector thus can analyze ∆η/d(τ) dependences of cumulants for 0 < ∆η < ∆ηmax. Note that this
estimate on d(τ) strongly depends on the value of D2; for smaller value of D2, d(τ) becomes much larger.
When one applies the net-baryon number to Qnet, the value of of d(τ) should be much smaller because the hadrons

having baryon number, namely baryons, are considerably heavier than those having electric charge, which are dom-
inated by pions in heavy ion collisions. This suggests that wider range of ∆η/d(τ) can be analyzed for net-baryon

Figure 1.20: D-measure as a function of ∆η for two initial conditions [29]
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Figure 12: Example of the solution of Eq. (164) [69]. Behaviors of the third- and fourth-order cumulants
as functions of rapidity window (∆η) for various initial conditions.

In the DME, motion of the individual particles composing the system is given by the random walk
without correlations with one another. The time evolution of the particle distribution thus is given by
the superposition of these uncorrelated particles. In the t → ∞ limit, each particle exists any position
with an equal probability irrespective of the initial condition, and they are uncorrelated with each other.
The particle number QL in an interval L, therefore, is simply given by Poisson distribution in this limit
when L is sufficiently smaller than the total length of the system. The cumulants of QL in this limit
thus is given by

⟨Qn
L⟩c = ⟨QL⟩ = ρL, (165)

with the average density ρ.
With the solution of Eq. (164), it is shown that the time evolution of Gaussian fluctuation in this

model agrees with that in the stochastic diffusion equation with χ2 = ρ. Equation (165) also shows that
higher order cumulants take a nonzero value in equilibrium, contrary to the SDE, and the approach of
the higher order cumulants toward the nonzero equilibrium values Eq. (165) can naturally be described
in this model.

The DME can be extended to the system with multi particle species. This allows us to define the
difference of two particle numbers. Because the distributions of two particle numbers in an interval
L become Poissonian in equilibrium, the difference of the particle numbers in the interval is given by
Skellam distribution in equilibrium. This property is suitable for the description of diffusive process
of net-baryon number in the hadronic medium in heavy ion collisions, because its fluctuations in the
HRG model is given by Skellam distribution as discussed in Sec. 3.3.1. In the DME, it is also possible
to consider four particle species having charges ±1 and ±2, to reproduce the equilibrium value of
net-electric charge fluctuation in the HRG model.

Next, let us consider the time evolution of the cumulants of the net-particle number Q(net) in a
rapidity interval ∆η. Similarly to the solution of SDE in Sec. 5.2, the time evolution of the cumulants
⟨Qn

(net)⟩c depends on ∆η and the proper time τ only through a combination X = ∆η/d(τ) where d(τ)
is the diffusion distance

d(τ) =

√

2

∫ τ

τinitial

dτD(τ). (166)

The effect of thermal broadening at kinetic freezeout discussed in Sec. 5.3 should also be included in
d(τ).

In Figs. 12 and 13, we show some examples of the ∆η dependences of third (left) and fourth (right)
order cumulants [69]. In these figures, the cumulants are normalized by their equilibrated values. These
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Figure 13: Same as Fig. 12, but with the initial conditions with large higher order cumulants.

quantities thus become unity at ∆η = 0, at which the distribution is given by Skellam one. The initial
conditions are chosen as those satisfying the locality condition Eq. (83), with the coefficients in front
of the delta-function, D2, D3, D4, a, b and c, are treated as free parameters. Here, Dn is the nth order
susceptibility of the net charge in the initial condition. Figure 12 shows the results for initial conditions
with small susceptibilities D3 and D4, while in Fig. 13 D3 and D4 are taken large. The figures show
that the ∆η dependences of higher order cumulants are sensitive to the initial condition. In particular,
it is interesting that the third and fourth order cumulants can have non-monotonic dependences on
∆η. These ∆η dependences can directly be compared with the experimental results [32, 166]. The
experimental measurement of non-monotonic ∆η dependences in Figs. 12 and 13 and extracting initial
parameters from these experimental results are interesting future subjects.

6 Binomial model

In this section, we address two problems associated with the experimental measurement of conserved-
charge fluctuations which are not covered in Secs. 4 and 5. One of them is concerned with the measure-
ment of the net-baryon number cumulants. As discussed in Sec. 3, among the thermal fluctuations of
conserved charges the one of net-baryon number shows the most clear signal of the phase transitions.
The present experimental detectors, however, are not capable of their measurement because the detec-
tors cannot count neutral baryons, especially neutrons. As proxies of net-baryon number cumulants,
those of net-proton number are observed [26, 28, 32] and compared with theoretical studies on the
net-baryon number cumulants in literature. The systematic error arising from this substitution has
to be estimated carefully [97, 98]. The second issue is the effect of finite efficiency and acceptance of
detectors. The real detectors cannot observe all particles entering the detector, but loss some of them
with some nonzero fraction. The detectors also have limitation of the acceptance. For example, some
azimuthal angles are not covered by the detectors, or hidden by the materials in front of the detectors,
and the particles arriving at such azimuthal angle is not detected. These finite efficiency and acceptance
modify the event-by-event fluctuation [98, 67].

In this section, we discuss that these two problems are qualitatively understood in a simultaneous
manner. In fact, the measurement of net-proton number in place of the net-baryon number is regarded
as 50% efficiency loss. In order to describe these effects, we employ a model for probability distribution
that we call the “binomial model”. The binomial model is first introduced in Ref. [97] to discuss the
similarity and difference between the net-baryon and net-proton number cumulants, and then extended
to investigate the effect of efficiency correction [98, 67]. The purpose of this section is to review the
binomial model and deal with these problems.
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Figure 1.21: Normalized third and fourth-order cumulants as a function of ∆η for several initial
conditions [29][30]
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Figure 12: Example of the solution of Eq. (164) [69]. Behaviors of the third- and fourth-order cumulants
as functions of rapidity window (∆η) for various initial conditions.

In the DME, motion of the individual particles composing the system is given by the random walk
without correlations with one another. The time evolution of the particle distribution thus is given by
the superposition of these uncorrelated particles. In the t → ∞ limit, each particle exists any position
with an equal probability irrespective of the initial condition, and they are uncorrelated with each other.
The particle number QL in an interval L, therefore, is simply given by Poisson distribution in this limit
when L is sufficiently smaller than the total length of the system. The cumulants of QL in this limit
thus is given by

⟨Qn
L⟩c = ⟨QL⟩ = ρL, (165)

with the average density ρ.
With the solution of Eq. (164), it is shown that the time evolution of Gaussian fluctuation in this

model agrees with that in the stochastic diffusion equation with χ2 = ρ. Equation (165) also shows that
higher order cumulants take a nonzero value in equilibrium, contrary to the SDE, and the approach of
the higher order cumulants toward the nonzero equilibrium values Eq. (165) can naturally be described
in this model.

The DME can be extended to the system with multi particle species. This allows us to define the
difference of two particle numbers. Because the distributions of two particle numbers in an interval
L become Poissonian in equilibrium, the difference of the particle numbers in the interval is given by
Skellam distribution in equilibrium. This property is suitable for the description of diffusive process
of net-baryon number in the hadronic medium in heavy ion collisions, because its fluctuations in the
HRG model is given by Skellam distribution as discussed in Sec. 3.3.1. In the DME, it is also possible
to consider four particle species having charges ±1 and ±2, to reproduce the equilibrium value of
net-electric charge fluctuation in the HRG model.

Next, let us consider the time evolution of the cumulants of the net-particle number Q(net) in a
rapidity interval ∆η. Similarly to the solution of SDE in Sec. 5.2, the time evolution of the cumulants
⟨Qn

(net)⟩c depends on ∆η and the proper time τ only through a combination X = ∆η/d(τ) where d(τ)
is the diffusion distance

d(τ) =

√

2

∫ τ

τinitial

dτD(τ). (166)

The effect of thermal broadening at kinetic freezeout discussed in Sec. 5.3 should also be included in
d(τ).

In Figs. 12 and 13, we show some examples of the ∆η dependences of third (left) and fourth (right)
order cumulants [69]. In these figures, the cumulants are normalized by their equilibrated values. These
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Figure 13: Same as Fig. 12, but with the initial conditions with large higher order cumulants.

quantities thus become unity at ∆η = 0, at which the distribution is given by Skellam one. The initial
conditions are chosen as those satisfying the locality condition Eq. (83), with the coefficients in front
of the delta-function, D2, D3, D4, a, b and c, are treated as free parameters. Here, Dn is the nth order
susceptibility of the net charge in the initial condition. Figure 12 shows the results for initial conditions
with small susceptibilities D3 and D4, while in Fig. 13 D3 and D4 are taken large. The figures show
that the ∆η dependences of higher order cumulants are sensitive to the initial condition. In particular,
it is interesting that the third and fourth order cumulants can have non-monotonic dependences on
∆η. These ∆η dependences can directly be compared with the experimental results [32, 166]. The
experimental measurement of non-monotonic ∆η dependences in Figs. 12 and 13 and extracting initial
parameters from these experimental results are interesting future subjects.

6 Binomial model

In this section, we address two problems associated with the experimental measurement of conserved-
charge fluctuations which are not covered in Secs. 4 and 5. One of them is concerned with the measure-
ment of the net-baryon number cumulants. As discussed in Sec. 3, among the thermal fluctuations of
conserved charges the one of net-baryon number shows the most clear signal of the phase transitions.
The present experimental detectors, however, are not capable of their measurement because the detec-
tors cannot count neutral baryons, especially neutrons. As proxies of net-baryon number cumulants,
those of net-proton number are observed [26, 28, 32] and compared with theoretical studies on the
net-baryon number cumulants in literature. The systematic error arising from this substitution has
to be estimated carefully [97, 98]. The second issue is the effect of finite efficiency and acceptance of
detectors. The real detectors cannot observe all particles entering the detector, but loss some of them
with some nonzero fraction. The detectors also have limitation of the acceptance. For example, some
azimuthal angles are not covered by the detectors, or hidden by the materials in front of the detectors,
and the particles arriving at such azimuthal angle is not detected. These finite efficiency and acceptance
modify the event-by-event fluctuation [98, 67].

In this section, we discuss that these two problems are qualitatively understood in a simultaneous
manner. In fact, the measurement of net-proton number in place of the net-baryon number is regarded
as 50% efficiency loss. In order to describe these effects, we employ a model for probability distribution
that we call the “binomial model”. The binomial model is first introduced in Ref. [97] to discuss the
similarity and difference between the net-baryon and net-proton number cumulants, and then extended
to investigate the effect of efficiency correction [98, 67]. The purpose of this section is to review the
binomial model and deal with these problems.
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Figure 1.22: Same as 1.21, but with the initial conditions large higher-order cumulants [29][30].
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1.6.3 Volume Fluctuation Correction

Initial volume fluctuation (VF) is the event-by-event fluctuation of number of participant nu-
cleons (NW ) in heavy-ion collision experiment. On higher-order event-by-event fluctuation
analysis, the VF is one of the experimental backgrounds which should be taken into account.
Specifically, it is well known that experimentally measured cumulants of net-particles are arti-
ficially enhanced due to the VF [32]. One of the possible way to suppress the VF is applying
Centrality Bin Width Correction (CBWC) [32] which is the data driven conventional method,
and STAR experiment has been applying this method. However, there might be some residual
fractions of VF backgrounds even with CBWC. Recently, a new correction method called Vol-
ume Fluctuation Correction (VFC) [33] is proposed under the assumption of the independent
particle production (IPP) model. HADES experiment applied this new correction method to the
experimental data [34]. The left hand side panel of Fig. 1.23 shows the centrality dependence
of net-proton κσ2 at HADES experiment. Color difference represents the different correction
method. Green and blue marker show the traditional efficiency corrected results based on bino-
mial distribution model, and the yellow and red marker show the results corrected by unfolding.
Blue and red marker show the volume fluctuation corrected results which are suppressed by the
correction compared with the green and yellow results. The right hand side panel of Fig. 1.23
shows the energy dependence of net-proton κσ2 from HADES experiment with published STAR
results. Black and red color represent the mid central and most central collisions and these color
also represent the unfolding results. Traditional efficiency correction results are shown as green
gradation color. VFC was applied for both results whereas STAR did not applied VFC for the
data.
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Figure 1.23: Centrality dependence of κσ2 of net-proton distributions for each correction method
at HADES experiment (left). Energy dependence of κσ2 of net-proton distributions at HADES
and STAR experiment [34].

As shown in Fig. 1.23, the values of the cumulants strongly depend on the correction method.
The validity of the VFC has already been studied by using simple toy model [33]. However, it is
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not obvious that VFC works well when we apply this method to the experimental data because
IPP model is expected to be broken in real experiment whereas IPP is established in the toy
model. Thus, it is important to study the validity of the VFC in more realistic case where IPP
is expected to be broken, but such studies have not been done yet. In this thesis, the validity
of the VFC is studied by using toy model and the UrQMD model simulations.
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Chapter 2

Moments and Cumulants

In this section, moments and cumulants which are used for experimental observables are intro-
duced with some important statistical basics.

2.1 Net quantities

Net-quantities, such as net-charge, net-baryon and net-strangeness, have an important role
because they are conserved values. Net-charge can be measured directly by the experiment
whereas net-proton and net-Kaon are measured as a proxy for net-baryon and net-strangeness.
The net-quantities are defined by

δNq = Nq −Nq̄, (2.1)

where Nq represents the number of baryon, charge or strangeness and Nq̄ represents the
number of anti-particles. For example, net-charge is defined as N+−N− where N+ and N− are
number of positively and negatively charged particles for each event respectively. Nq and Nq̄

are not conserved quantities due to the pair production and annihilation but net-charge is not
affected by these effect. That is the reason why net-quantities are ”conserved”. Fig. 2.1 shows
the event-by-event net-proton distributions for three different centralities in Au+Au collision
at

√
sNN = 200 GeV at the STAR experiment [15].

2.2 Moments

The nth-order non-central moments is defined by

⟨mn⟩ =
∑
m

mnP (m), (2.2)

where m is defined by the integer stochastic variable, and P (m) represents the probability
distribution satisfying

∑
m P (m) = 1. The bracket represents the statistical average and the

nth-order central moments are also defined by

⟨δmn⟩ = ⟨(m− ⟨m⟩)n⟩. (2.3)
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3

to baryon number susceptibilities and long range correlations, are constant as functions of collision
centrality. We compare these products with results from lattice QCD and various models without
a critical point and study the

√
sNN dependence of κσ2. From the measurements at the three beam

energies, we find no evidence for a critical point in the QCD phase diagram for µB below 200 MeV.

PACS numbers: 25.75.Gz,12.38.Mh,21.65.Qr,25.75.-q,25.75.Nq

One of the major goals of the heavy-ion collision pro-
gram is to explore the QCD phase diagram [1]. Finite
temperature lattice QCD calculations [2] at baryon chem-
ical potential µB = 0 suggest a cross-over above a critical
temperature (Tc) ∼ 170 – 190 MeV [3] from a system
with hadronic degrees of freedom to a system where the
relevant degrees of freedom are quarks and gluons. Sev-
eral QCD based calculations (see e.g [4]) find the quark-
hadron phase transition to be first order at large µB. The
point in the QCD phase plane (T vs. µB) where the first
order phase transition ends is the QCD Critical Point
(CP) [5, 6]. Attempts are being made to locate the CP
both experimentally and theoretically [7]. Current the-
oretical calculations are highly uncertain about location
of the CP. Lattice QCD calculations at finite µB face nu-
merical challenges in computing. The experimental plan
is to vary the center of mass energy (

√
sNN) of heavy-ion

collisions to scan the phase plane [8] and at each energy,
search for signatures of the CP that could survive the
time evolution of the system [9].

In a static, infinite medium, the correlation length (ξ)
diverges at the CP. ξ is related to various moments of the
distributions of conserved quantities such as net-baryons,
net-charge, and net-strangeness [10]. Typically variances
(σ2 ≡

〈

(∆N)2
〉

; ∆N = N −M ; M is the mean) of these
distributions are related to ξ as σ2 ∼ ξ2 [11]. Finite size
and time effects in heavy-ion collisions put constraints
on the values of ξ. A theoretical calculation suggests ξ
≈ 2-3 fm for heavy-ion collisions [12]. It was recently
shown that higher moments of distributions of conserved
quantities, measuring deviations from a Gaussian, have a
sensitivity to CP fluctuations that is better than that of
σ2, due to a stronger dependence on ξ [13]. The numer-
ators in skewness (S =

〈

(∆N)3
〉

/σ3) goes as ξ4.5 and
kurtosis (κ = [

〈

(∆N)4
〉

/σ4] - 3) goes as ξ7. A crossing
of the phase boundary can manifest itself by a change of
sign of S as a function of energy density [13, 14].

Lattice calculations and QCD-based models show
that moments of net-baryon distributions are related to

baryon number (∆NB) susceptibilities (χB =
⟨(∆NB)2⟩

V T ;
V is the volume) [15]. The product κσ2, related to the

ratio of fourth order (χ(4)
B ) to second order (χ(2)

B ) sus-
ceptibilities, shows a large deviation from unity near the
CP [15]. Experimentally measuring event-by-event net-
baryon numbers is difficult. However, the net-proton
multiplicity (Np − Np̄ = ∆Np) distribution is measur-
able. Theoretical calculations have shown that ∆Np fluc-
tuations reflect the singularity of the charge and baryon

number susceptibility as expected at the CP [16]. Non-
CP model calculations (discussed later in the paper) show
that the inclusion of other baryons does not add to the
sensitivity of the observable. This letter reports the first
measurement of higher moments of the ∆Np distribu-
tions from Au+Au collisions to search for signatures of
the CP.
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FIG. 1: (Color online) ∆Np multiplicity distribution in
Au+Au collisions at

√
sNN = 200 GeV for various collision

centralities at midrapidity (| y |< 0.5). The statistical errors
are shown.

The data presented in the paper are obtained using
the Time Projection Chamber (TPC) of the Solenoidal
Tracker at RHIC (STAR) [17]. The event-by-event pro-
ton (Np) and anti-proton (Np̄) multiplicities are mea-
sured for Au+Au minimum bias events at

√
sNN = 19.6,

62.4, and 200 GeV for collisions occurring within 30 cm
of the TPC center along the beam line. The numbers of
events analyzed are 4×104, 5×106, and 8×106 for

√
sNN

= 19.6, 62.4, and 200 GeV, respectively. Centrality selec-
tion utilized the uncorrected charged particle multiplicity
within pseudorapidity | η | < 0.5, measured by the TPC.
For each centrality, the average numbers of participants
(⟨Npart⟩) are obtained by Glauber model calculations.
The ∆Np measurements are carried out at midrapidity
(| y | < 0.5) in the range 0.4 < pT < 0.8 GeV/c. Ioniza-
tion energy loss (dE/dx) of charged particles in the TPC
was used to identify the inclusive p(p̄) [18]. To suppress
the contamination from secondary protons, we required
each p(p̄) track to have a minimum pT of 0.4 GeV/c and
a distance of closest approach (DCA) to the primary ver-
tex of less than 1 cm [18]. The pT range used includes

Figure 2.1: Event-by-event net-proton distributions for three centralities in Au+Au collision at√
sNN = 200 GeV at the STAR experiment [15]

By definition, ⟨δm1⟩ = 0. If the variable is continuous stochastic variable which is defined as x,
the moments can be written as

⟨xn⟩ =
∑
x

xxP (x). (2.4)

Then, Mean (M), variance (σ2), skewness (S) and kurtosis (K) are defined by

M = ⟨x⟩, (2.5)

σ2 = ⟨(x− ⟨x⟩)2⟩
= ⟨x2⟩ − ⟨x⟩2, (2.6)

S =
⟨x3⟩
σ3

, (2.7)

κ =
⟨x4⟩
σ4

− 3. (2.8)

Skewness and kurtosis represent the ”asymmetry” and ”tailedness” of the distributions respec-
tively.

Then, moment generating function is introduced in order to calculate higher-order moments
easily, which is defined as

M(θ) = ⟨eθX⟩ (2.9)

=

{ ∑
m eθmP (m) for integer case∫∞

0 eθxP (x)dx for continuous case
(2.10)

The nth-order moments are given by the derivatives of M(θ) as

⟨mn⟩ = dn

dθn
M(θ)|θ=0. (2.11)
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Figure 2.2: Typical distribution functions with non-zero skewness (left) and kurtosis (right) [30]

For example, second-order moments can be written as

d2

dθ2
M(θ)|θ=0 = ⟨m2eθX⟩θ=0

= ⟨m2⟩. (2.12)

Therefore, n times derivatives of M(θ) generate the ⟨mn⟩, which is the reason why M(θ) is
called moment ”generating” function.

2.3 Additivities

Additivity is a very useful property but moments do not have this property. For example, we
suppose two independent phase space X and Y . If moments have additivity, M(θ,X+Y ) must
be the same as M(θ,X) +M(θ, Y ) but M(θ,X + Y ) is written by

M(θ,X + Y ) = ⟨eθ(X+Y )⟩
= ⟨eθXeθY ⟩. (2.13)

Therefore, it is obvious that moments don’t have additivity. Then, cumulant generating function
is introduced.

2.4 Cumulants

The cumulant generation function is defined by

K(θ) = ln(M(θ)), (2.14)

and cumulants are also defined by

Cn =
dk

dθk
K(θ)|θ=0, (2.15)
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which have additivity and proportional to the volume. Cumulants can be written by the mo-
ments as follows

C1 = ⟨m1⟩, C2 = ⟨δm2⟩, C3 = ⟨δm3⟩, C4 = ⟨δm4⟩ − ⟨δm3⟩. (2.16)

Moments also can be written by using the cumulants. In general, cumulants are expressed
as

Cn = ⟨mn⟩ −
n−1∑
m=1

n−1Cm−1Cm⟨mn−m⟩. (2.17)

In addition, M , σ, S and κ can be expressed by cumulants as

M = C1, σ2 = C2, S =
C3

(C2)
3
2

, κ =
C4

(C2)2
. (2.18)

By taking ratio, the effect of the volume can be canceled out and the following relation consist,

Sσ =
C3

C2
, (2.19)

κσ2 =
C4

C2
. (2.20)

2.5 Sum and difference of two stochastic variables

In this section, sum and difference of two stochastic variables are introduced. We consider two
integer stochastic variables which are represented as m1 and m2 respectively. The probability
distributions of sum and difference of two stochastic variables are given by

P (m) =
∑

m1,m2

δm,m1±m2P (m1)P (m2). (2.21)

The moment and cumulant generating function are given by

M(θ) =
∑
m

(emθ)P (m)

=
∑
m

(emθ)
∑

m1,m2

δm,m1±m2P1(m1)P2(m2)

=
∑

m1,m2

eθm1e±θm2P1(m1)P2(m2)

= M1(θ)M2(±θ) (2.22)

K(θ) = K1(θ) +K2(±θ) (2.23)

Therefore, cumulants of sum of two variables can be written by using Eq. (2.15) as

dn

dθn
K(θ) =

dn

dθn
K1(θ) +

dn

dθn
K2(θ). (2.24)

The cumulants of net-variables also can be written by the same procedures as

dn

dθn
K(θ) =

dn

dθn
K1(θ) + (−1)n

dn

dθn
K2(θ). (2.25)
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2.6 Susceptibility

In this section, we consider the relation between cumulants and the susceptibilities. We suppose
the grand canonical ensemble. First, density operator is defined by using HamiltonianH, inverse
temperature β, baryon chemical potential µ, number of particle N and partition function Z as

ρGC =
tr[e−β(Ĥ−µN̂)]

Z
. (2.26)

Then, the mean value of the variable A can be calculated by tr[ρA], and tr[ρGC ] = 1 must be
consist. Therefore, the partition function Z must be written as

Z = tr[e−β(Ĥ−µN̂)]. (2.27)

In addition, Grand canonical potential Ω and its density ω can be written by using Z as

Ω = −T lnZ , (2.28)

ω =
Ω

V
, (2.29)

where V is a volume. In general, N̂ does not satisfy the commutation relation with Ĥ because Ĥ
is an operator. However, if we suppose N̂ as conserved value such as net-charge or net-baryon,
dN̂
dt = 0 is consist. We can write the following formula by using Heisenberg equation of motion
dN̂
dt = i

h̄ [Ĥ, N̂ ] as

[Ĥ, N̂ ] = 0. (2.30)

By differentiative Ω by µ, we can find

∂Ω

∂µ
= −T

Z

∂Z

∂µ

= −T

Z
tr[βN̂e−β(Ĥ−µN̂)]

= −tr[N̂ρ]

= −⟨N⟩. (2.31)

The second-order differential also can be written as

C2 = −T
∂2Ω

∂µ2
(2.32)

Then we also define Ω̂ = Ω
T , ω̂ = ω

T and µ̂ = µ
T . Generally, nth-order differential is written by

Cn = (−T )n−1∂
nΩ

∂µn

=
∂n(−ω̂)

∂µ̂n
V ≡ χnV, (2.33)
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where we used Eq. (2.30), and χn represents the nth-order susceptibilitiy which is defined as

χn =
∂n(−ω̂)

∂µ̂n
. (2.34)

From Eq. (2.34), nth-order cumulants can be generated by nth-order differential of the grand
potential Ω. Therefore, Ω correspond to the generating functions. Moreover, by Eq. (2.33)

Cn+1 = T
∂

∂µ
Cn (2.35)

can be written. From Eq. (2.31) and Eq. (2.33), C2 can be written as

χ2 =
C2

V
=

∂

∂µ

T ⟨N⟩
V

. (2.36)

The right hand side term of Eq. (2.36) shows the magnitude of the variation of ⟨N⟩ with the
change of µ which is the external force. This is the reason why the left hand side term χ is called
”susceptibility”, and this relation is called linear response relationship [30]. If N is not conserved
variables, Eq. (2.33) and Eq. (2.35) don’t consist because we supposed Eq. (2.30) which is not
consist if N is not conserved value. Eq. (2.33) says that if susceptibilities dramatically changed
near the critical point, cumulants also changed. In addition, from Eq. (2.36), it is obvious
that cumulants are proportional to the volume V , which is the properties of additivity, and the
cumulant ratios can be directly compared to the susceptibility ratios like

C3

C2
=

χ3

χ2
, (2.37)

C4

C2
=

χ4

χ2
, (2.38)

because the effect of the volume is canceled out by taking ratio. This is very important
property because we can not directly measure the susceptibility, but Eq. (2.37) and Eq. (2.38) tell
us that we can calculate the susceptibility ratio by measuring the cumulant ratio experimentally.

It is said that correlation length ξ is also dramatically changed near the critical point and
relation between cumulants and the correlation length is written by

C3 ∼ ξ4.5, (2.39)

C4 ∼ ξ7, (2.40)

C5 ∼ ξ9.5, (2.41)

C6 ∼ ξ12. (2.42)

From Eq. (2.39) to Eq. (2.42), it is obvious that the higher cumulants are more sensitive to the
correlation length than lower order cumulants.

2.7 Statistical baseline

In thin section, some specific distributions are introduced, which are compare to experimental
results in the later sections.
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2.7.1 Binomial Distribution (BD)

The Binomial Distribution (BD) represents the distribution of the number of ”success” under
the independent N trials. The probability function is defined by

Bp,N (k) = NCkp
k(1− p)N−k, (2.43)

where

NCk =
N !

r!(N − r)!
. (2.44)

k and the parameter p correspond to the number of and the probability of ”success” respectively.
The moment and cumulant generating function can be written from Eq. (2.10), Eq. (2.43) and
Eq. (2.44) as

M(θ) =
∑
k

NCk(pe
θ)k(1− p)N−k

= (peθ + 1− p)N , (2.45)

Kθ = N(peθ + 1− p). (2.46)

By differentiate Eq. (2.46), up to the sixth-order cumulants can be written as

C1 = µ, (2.47)

C2 = µϵ, (2.48)

C3 = µϵ(2ϵ− 1), (2.49)

C4 = µϵ(6ϵ2 − 6ϵ+ 1), (2.50)

C5 = µϵ(2ϵ− 1)(12ϵ2 − 12ϵ+ 1), (2.51)

C6 = µϵ(120ϵ4 − 240ϵ3 + 150ϵ2 − 30ϵ+ 1), (2.52)

where

ϵ = 1− p, (2.53)

µ = pN, (2.54)

where µ represents the mean value of the distribution. It is obvious that 0 < ϵ < 1 from
Eq. (2.53). Therefore, from Eq.(2.49), the following relation can be written straightforwardly,

C2 < µ. (2.55)

In other words, variance of the BD is smaller than that of the mean value. In addition, it can
be seen that cumulants of BD are proportional to N from Eq. (2.54) and Eq. (2.47) to (2.52).
These conclusion is consistent with the properties of the cumulants which is ”additivities”.

Next, let us consider the sum and the difference of the two independent BD with the same
probability p. From Eq. (2.25) and Eq. (2.46), sum and difference of the two independent BD
can be expressed as

Csum
n = Ca

n + Cb
n, (2.56)

Cnet
n = Ca

n + (−1)nCb
n, (2.57)

where Ca
n and Cb

n represent the cumulants for each independent BD.
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2.7.2 Negative Binomial Distribution (NBD)

There are various definitions of the Negative Binomial Distribution (NBD). One of the definition
of NBD is considered as the distribution of the number of ”success” under given r ”failures”
The probability function is given by

Fr,p(k) = r+k−1Ckp
k(1− p)r

= −rCkp
k(1− p)r. (2.58)

We used negative binomial theorem from the first to the second line in Eq. (2.58). The negative
binomial theorem is defined by

(1 + p)−n = nCkp
k

= (−1)kr+k−1Cn−1p
k, (2.59)

which is the reason why this distribution is called ”negative” binomial.
The moment and cumulant generating function can be written from Eq. (2.54), (2.58) and

(2.59) as

M(θ) =
∑
k

nCk(pe
θ)k(1− p)n−k

= (peθ + 1− p)n, (2.60)

Kθ = N(peθ + 1− p). (2.61)

By differentiate Eq. (2.61), up to the sixth-order cumulants can be written. Surprisingly, cumu-
lants can be written as the same formula as Eq. (2.47) to Eq. (2.52) even though the definition
is different between BD and NBD if we define

ϵ =
1

1− p
, (2.62)

µ =
pr

1− p
. (2.63)

It is obvious that 1 < ϵ from Eq. (2.62). Therefore, the following relation can be established
like the BD case,

C2 > µ. (2.64)

Contrary to the BD, variance of the NBD is larger than that of the mean value. Eq. (2.56) and
Eq. (2.57) are also consist for NBD case by the same procedures as BD.

In the Eq. (2.59), parameter k and r can only take integer. By using gamma function, these
values can be expand to the continuous variable. For example, Eq. (2.58) can be expressed as

r+k−1Ckp
k(1− p)r =

Γ(r + k)

Γ(k + 1)Γ(r)
pk(1− p)r. (2.65)

In addition, we define the mean value of the distribution as m which can be written by
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⟨k⟩ = pr

1− p
≡ m. (2.66)

Then, the probability function is written as

Fr,p(k) =
Γ(r + k)

Γ(k + 1)Γ(r)

(
m

r +m

)k ( r

r +m

)r

=
Γ(r + k)

Γ(k + 1)Γ(r)

(m
r

)k (m
r

+ 1
)−(r+k)

. (2.67)

2.7.3 Poisson distribution

The Poisson distribution is given by taking the p→0 limit of the BD with fixed λ = pN and
defined by

P (m) = e−λλ
m

m!
, (2.68)

where λ is the parameter of the distribution and m is the positive integer.
The moment and cumulant generating function are given from Eq. (2.10) and Eq. (2.68) by

M(θ) = e−λ
∑
m

eθm
λm

m!

= e−λexp(λeθ), (2.69)

where Taylor series are used. The cumulant generating function is given from Eq. (2.14) and
Eq. (2.68) by

K(θ) = ln(M(θ))

= λ(eθ − 1). (2.70)

By Eq.(2.15), cumulants of the Poisson distribution are given by

dn

dθn
K(θ) = λ. (2.71)

Therefore, all the cumulants of the Poisson distribution are the same.
Then, we suppose two independent Poisson distributions with parameters λ1 and λ2. By

Eq. (2.24), sum of the two independent Poisson distributions with parameters λ1 and λ2 is
written as

λ3 = λ1 + λ2, (2.72)

where λ3 represent the parameter of sum of the distributions. Therefore, sum of the two
independent Poisson distributions follow the Poisson distribution.
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2.7.4 Skellam distribution

In previous section, we showed that sum of the two independent Poisson distribution also follow
the Poisson distribution. However, difference of the two independent Poisson distribution does
not follow the Poisson distribution, which follows the Skellam distribution. By Eq. (2.25)
cumulants of the Skellam distributions are given by

Cn = λ1 + (−1)nλ2.

(2.73)

By using Eq. (2.73), cumulant ratios of the different order Skellam distributions can be
calculated as

C2n

C2m
=

C2n+1

C2m+1
= 1, (2.74)

C2n

C2m+1
=

λ1 + λ2

λ1 − λ2
, (2.75)

C2n+1

C2m
=

λ1 − λ2

λ1 + λ2
, (2.76)

where n and m take the positive integer. Thus, C2n and C2n+1 represent the even and odd
order cumulants respectively. For example,

C6

C2
=

C4

C2
= 1, (2.77)

C5

C2
=

C3

C2
=

λ1 − λ2

λ1 + λ2
, (2.78)

2.7.5 Gaus distribution

At last of this section, Gaus distribution is introduced. The probability function of the Gaus
distribution is defined by

G(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, (2.79)

which satisfies
∫∞
−∞ dxG(x) = 1.

The moment and cumulant generating function are given by

M(θ) =

∫ ∞

−∞
eθx

1√
2πσ2

exp

(
−(x− µ)

2σ2

)
=

1√
2
exp

(
µθ +

1

2
σ2θ2

)
, (2.80)

K(θ) = µθ +
1

2
σ2θ2 +A, (2.81)

where A is a constant value which is vanished after differentiative. Therefore, cumulants can
be expressed as
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C1 = µ, (2.82)

C2 = σ2, (2.83)

Cn = 0 for n ≥ 3. (2.84)

From Eq. (2.82) to (2.84), µ and σ represent the mean and variance of the distribution
respectively, and more higher-order cumulants take 0. Therefore, higher-order fluctuations are
called ”non-Gaussian” fluctuation.

2.8 D-measure

In this section, D-measure (D) is introduced. There are various definition of D-measure, ant
two of them are introduced in this thesis.

2.8.1 D-measure defined by second-order cumulant

D-measure is defined as the second-order net-charge cumulant (C2) divided by the entropy
density. Experimentally, number of charged particles in finite acceptance is used as a proxy for
the entropy density. D-measure is written as

D = 4
C2

⟨Nch⟩
, (2.85)

where Nch = N+ +N−. If N+ and N− follow the Poisson distribution whose parameters are λ1

and λ2 respectively. From Eq. (2.73), second-order cumulant of the Skellam distribution takes
sum of the Poisson parameters, C2 = λ1 + λ2. Therefore, the value of D-measure is D = 4
which corresponds to the values of hadron gas fluctuation. Let us consider the simple model.
If there are hadron thermalization, and we suppose all hadrons are baryons which follow the
Poisson distributions for simplicity. nth-order cumulants of net-particle distributions of baryon
(δNB) follow the

⟨δNB
n⟩c = ⟨NB⟩. (2.86)

On the other hand, in case of QGP, that of quark (δNq) follow the

⟨δNq
n⟩c = ⟨Nq⟩. (2.87)

Baryon is composed of three quarks. Thus, the following relation is consist.

3NB = Nq (2.88)

From, Eq. (2.87) and Eq. (2.88), if measured cumulants ”remember” the QGP thermaliza-
tion, measured cumulant follow the

⟨δNB
n⟩c =

1

3n
⟨NB⟩. (2.89)

Therefore, if measured cumulants ”remember” the QGP thermalization, cumulants become
smaller with higher-order. As already mentioned, D-measure is defined as the second-order
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Figure 2.3: Number of hadron and quark

fluctuation over the first-order fluctuation. Thus, D-measure under the assumption of QGP
thermalization is smaller than that of hadron gas.

This is very simple model, but the similar trends are predicted by various theoretical con-
siderations such as HRG model and Lattice QCD calculation. According to the Lattice QCD
calculations, D = 4 in free pion gas and D = 3 if we consider the resonance yield [28]. If
there is a fluctuation from QGP, D =1-1.5. HRG model also predicted D =3-4 and D is about
twice smaller if there is deconfinement medium [35][30]. In any case, D-measure from QGP
thermalization is smaller than that of hadron thermalization. Therefore, D-measure may be a
good probe to figure out the time expansion and phase transition.

2.8.2 D-measure defined by ν(+−,dyn)

ν(+−) is defined as

ν(+−) =

⟨(
N+

⟨N+⟩
− N−

⟨N−⟩

)2
⟩
. (2.90)

Then, the following relation is established.

⟨Nch⟩ν(+−) ≈ 4
C2

⟨Nch⟩
. (2.91)

If distribution follow the Poisson distribution, ν(+−) is written by

ν(+−,stat) =
1

⟨N+⟩
+

1

⟨N−⟩
. (2.92)

Then, ν(+−,dyn) is defined by

ν(+−,dyn) = ν(+−) − ν(+−,stat)

=
⟨N+(N+ − 1)⟩

⟨N+
2⟩

+
⟨N−(N− − 1)⟩

⟨N−
2⟩

− 2
⟨N+N−⟩
⟨N+⟩⟨N−⟩

. (2.93)

In addition, the following formula is obtained,

⟨Nch⟩ν(+−,dyn) ≈ D − 4. (2.94)
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ν(+−,dyn) does not affected by tracking efficiency and represents the correlation between N+

and N−. If there are no correlation between N+ and N−, ν(+−,dyn) takes 0. ν(+−,dyn) > 0
and ν(+−,dyn) < 0 mean the positive and negative correlations respectively. Experimentally,
ν(+−,dyn) was observed to have negative value at both STAR and ALICE experiment [31][28].
These results mean that N+ and N− have positive correlations.
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Chapter 3

Experiment

3.1 Relativistic Heavy Ion Collider (RHIC)

The Relativistic Heavy Ion Collider (RHIC) is the first and unique heavy-ion accelerator at
Brookhaven National Laboratory (BNL) in United States of America. QGP is created on the
earth by colliding ions traveling at relativistic speeds in order to study the properties of the
QGP. Fig. 3.1 shows the picture of RHIC. RHIC started from 2000, and RHIC can accelerate
various ions not only protons but also gold, copper, aluminum nuclei and so on. The top energy
is

√
sNN = 200 GeV in Au+Au collisions. There are two circular rings of superconduction

magnets which are called ”Blue ring” and ”Yellow ring”. The rings are 3.8 km in circumstance.
In Au+Au collisions, ions are accelerated by the following steps. First, gold ions are created by
sputter ion source and accelerated to 1 MeV per nucleon. Some of the electrons are stripped
(Au+32). Next, ions are accelerate to 2 MeV by Linear accelerator (LINAC) and accelerate to
70 GeV by Booster Synchrotron. At the end of the Booster, most of the electrons are stripped
by stripper foil and the charge state reach to Au+77. Then, gold ions are accelerated to 9 GeV
and electrons are stripped to the charge state of Au+79 at Alternating Gradient Synchrotron
(AGS). Then ions are injected into RHIC [37].

There are six collision points at RHIC and six different experiments were conducted for each
collision point. Now only STAR experiment is being conducted.
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Figure 3.1: An aerial photo of the accelerators at BNL [36]

3.2 The STAR experiment

The Solenoidal Tracker At RHIC (STAR) is the experiment conducted at the 6 O’clock position
on RHIC. Fig. 3.2 shows the sketch of the STAR detectors. The aim of the STAR experiment is
to study the properties and formation of the QGP. There are 65 institutions from 14 countries
and 652 collaborators.

3.2.1 Time Projection Chamber

Time Projection Chamber (TPC) is one of the main detector of STAR experiment which is
4.2 m long and 4 m in diameter. Fig. 3.3 shows the schematic sketch of TPC [38]. The TPC
is filled with P10 gas (90% argon and 10% methane), and can record the tracks of particles
and measure their momenta. The acceptance covers ±1.8 units of pseudo-rapidity and overs
full azimuthal angle. Multiplicities more than 3000 tracks are routinely reconstructed by the
software. Momenta can be measured over a range of 100 MeV/c to 30 GeV/c. Basic parameters
of the TPC are shown at Fig. 3.4.

Particle identification (PID) can be done by using ionization energy loss (dE/dx) over a mo-
mentum range from 100 MeV/c to greater than 1 GeV/c. Fig. 3.5 shows the dE/dx distribution
as a function of momentum of the particles.

The uniform electric field of 135 V/cm is applied by 28 kV central membrane and the end
caps which are ground. The magnetic field is also applied at 0.5 T by solenoidal magnet. Both
electric and magnetic fields are applied along to the beam direction. The primary particles
pass through the gas and ionized. Trajectories of these primary particles are reconstructed by
secondary electrons which drift to the end caps.

The end-cap read out plane is consist of Multi-Wire Proportional Chambers (MWPC) with
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Figure 3.2: STAR detector

wires providing an amplification of 1000 to 3000. The positive ions created in the
avalanche induce a temporary image charge on the pads which disappears as the
ions move away from the anode wire. The image charge is measured by a pream-
plifier/shaper/waveform digitizer system. The induced charge from an avalanche
is shared over several adjacent pads, so the original track position can be recon-
structed to a small fraction of a pad width. There are a total of 136,608 pads in the
readout system.

The TPC is filled with P10 gas (10% methane, 90% argon) regulated at 2 mbar
above atmospheric pressure[7]. This gas has long been used in TPCs. It’s primary
attribute is a fast drift velocity which peaks at a low electric field. Operating on the
peak of the velocity curve makes the drift velocity stable and insensitive to small
variations in temperature and pressure. Low voltage greatly simplifies the field cage
design.

The design and specification strategy for the TPC have been guided by the limits of
the gas and the financial limits on size. Diffusion of the drifting electrons and their
limited number defines the position resolution. Ionization fluctuations and finite
track length limit the dE/dx particle identification. The design specifications were
adjusted accordingly to limit cost and complexity without seriously compromising
the potential for tracking precision and particle identification.

Fig. 1. The STAR TPC surrounds a beam-beam interaction region at RHIC. The collisions
take place near the center of the TPC.

3

Figure 3.3: Schematic sketch of the TPC [38]
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Table 1 lists some basic parameters for the STAR TPC. The measured TPC per-
formance has generally agreed with standard codes such as MAGBOLTZ[8] and
GARFIELD[9]. Only for the most detailed studies has it been necessary to make
custom measurements of the electrostatic or gas parameters (e.g. the drift velocity
in the gas).

Item Dimension Comment

Length of the TPC 420 cm Two halves, 210 cm long

Outer Diameter of the Drift Volume 400 cm 200 cm radius

Inner Diameter of the Drift Volume 100 cm 50 cm radius

Distance: Cathode to Ground Plane 209.3 cm Each side

Cathode 400 cm diameter At the center of the TPC

Cathode Potential 28 kV Typical

Drift Gas P10 10% methane, 90% argon

Pressure Atmospheric + 2 mbar Regulated at 2 mbar above Atm.

Drift Velocity 5.45 cm / µs Typical

Transverse Diffusion (σ) 230µm/
√

cm 140 V/cm & 0.5 T

Longitudinal Diffusion (σ) 360µm/
√

cm 140 V/cm

Number of Anode Sectors 24 12 per end

Number of Pads 136,608

Signal to Noise Ratio 20 : 1

Electronics Shaping Time 180 ns FWHM

Signal Dynamic Range 10 bits

Sampling Rate 9.4 MHz

Sampling Depth 512 time buckets 380 time buckets typical

Magnetic Field 0, ±0.25 T, ±0.5 T Solenoidal

Table 1
Basic parameters for the STAR TPC and its associated hardware.

2 Cathode and Field Cage

The uniform electric field in the TPC is defined by establishing the correct boundary
conditions with the parallel disks of the central membrane (CM), the end-caps, and
the concentric field cage cylinders. The central membrane is operated at 28 kV. The
end caps are at ground. The field cage cylinders provide a series of equi-potential

4

Figure 3.4: Basic parameters of the TPC [38]

Fig. 11. The energy loss distribution for primary and seconday particles in the STAR TPC
as a function of the pT of the primary particle. The magnetic field was 0.25 T.

6 Conclusions

The STAR TPC is up and running at RHIC. The detector finished its second year
of operation on January 25th, 2002 and the operation of the TPC was stable and
reliable throughout both run cycles. Its performance is very close to the original
design requirements in terms of tracking efficiency, momentum resolution, and en-
ergy loss measurements. Many results from the 2000/2001 data have already been
published and they demonstrate that the physics at RHIC is exciting and rich. We
invite you to examine these papers[25,26,27,28,29,30,31].
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Figure 3.5: The energy loss distribution as a function of momentum [38].

37



modules. There are 12 sectors which are arranged as on a clock around the circle. Fig. 3.6
shows the sketch of the anode pad plane of one sector. Electrons drift and avalanche at the high
electric fields at the anode wires and amplification is 1000-3000. Then, positive ions are created
because of the avalanche, and the image charges on the pads are measured. The charge from
the avalanche is shared over several adjacent pads. For example, 3 adjacent pads are shared in
a row. The position of the cluster is determined by these 3 pads. If we suppose the distribution
of the signal follow the Gaussian distribution, position (x, y) can be determined as follows,

x =
σ2

2w
ln

(
h3
h1

)
, (3.1)

σ2 =
w2

ln(h2
2/h2h3)

, (3.2)

where h1, h2 and h3 represent the amplitudes of 3 adjacent pads. We supposed that pad h2
centered at (x, y) = (0, 0) and w represents the pad width.

Item Inner Subsector Outer Subsector Comment

Pad Size 2.85 mm x 11.5 mm 6.20 mm x 19.5 mm

Isolation Gap between pads 0.5 mm 0.5 mm

Pad Rows 13 (#1-#13) 32 (#14-#45)

Number of Pads 1,750 3,942 5,692 total

Anode Wire to Pad Plane Spacing 2 mm 4 mm

Anode Voltage 1,170 V 1,390 V 20:1 signal:noise

Anode Gas Gain 3,770 1,230

Table 3
Comparison of the Inner and Outer subsector geometries.

Fig. 4. The anode pad plane with one full sector shown. The inner sub-sector is on the right
and it has small pads arranged in widely spaced rows. The outer sub-sector is on the left
and it is densely packed with larger pads.

The inner sub sectors are in the region of highest track density and thus are opti-
mized for good two-hit resolution. This design uses smaller pads which are 3.35
mm by 12 mm pitch. The pad plane to anode wire spacing is reduced accordingly
to 2 mm to match the induced signal width to 3 pads. The reduction of the induced
surface charge width to less than the electron cloud diffusion width improves two
track resolution a small amount for stiff tracks≈ perpendicular to the pad rows at η
≈0. The main improvement in two track resolution, however, is due to shorter pad
length (12 mm instead of 20 mm). This is important for lower momentum tracks
which cross the pad row at angles far from perpendicular and for tracks with large
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Figure 3.6: The anode pad plane with one sector [38].

3.2.2 Time Of Flight

As discussed in previous subsection, PID can not be done over a momentum range more than
1 GeV/c by using TPC. Time Of Flight (TOF) detector is used for PID not only low pT region
but also high pT region more than 1 GeV/c. PID can be done by measuring the mass of the
particle species. The mass of the particles are measured as

m2 = p2

((
t

L

)2

− 1

)
, (3.3)

where L is the distance between TOF detector and the collision vertex, and p is the momentum
of the particles measured by TPC. t is the time difference between ”start time” and ”stop time”.
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Stop time is measured by TOF and start time is measured by VPD which will be explained in
the next subsection. Eq. (3.3) can be easily obtained by the following steps. From relativistic
theory, momentum p can be written as

p = γmv, (3.4)

where γ is called ”Gamma factor” or ”Lorentz factor” which is defined as 1/
√
1− β2, where

β = v/c. When we define c = 1, β is expressed by

β = v

=
L

t
. (3.5)

From Eq. (3.4) and Eq. (3.5), Eq. (3.3) is obtained.
The mass resolution is given by

dm

m
=

√(
dp

p

)2

+ γ4
(
dt

t
+

dL

L

)2

, (3.6)

where dm and dt show the resolution of the mass and time. From Eq. (3.6), mass resolution dm
depends on time resolution dt. Therefore, it is important to use TOF which have good timing
resolution.

STAR TOF is based on Multi-gap Resistive Plate Chamber (MRPC). Fig. 3.7 shows the
side view (upper panel) and end view (lower panel) of MRPC. There are stack of resistive plate
which is 0.54 mm float glass and 220 µm gas gaps between the plates. High voltage is applied
to graphite electrodes which are applied to the outer surface of the resistive plates. Therefore,
strong electric field is generated for each gap. If charged particle go through the stack, primary
ionization is generated along the path and produce Townsend amplification avalanche because
of the strong electric field. Then, we can read the signal as the sum of the avalanches from
readout pads. The stop time resolution is approximately 80 ps. The MRPC is bathed in a
gas which is composed of Freon R-134a (90-95%), isobutane and SF6. Isobutane and SF6 can
suppress the streamers which cause very large avalanche.

Signals are digitized in CAMAC by subsystem with VPD. Fig. 3.8 shows the 1/β measured
by TOF detector as a function of the momentum of the particles. The bands correspond to
the identified charged particles, such as pion, Kaon and proton. Pion, Kaon and proton can be
separated over a momentum range more than 1 GeV/c.

3.2.3 Vertex Position Detector

Vertex Position Detector (VPD) is 2 × 19 channel detector used for minimum-bias trigger in
Au+Au collisions, measuring the position of the primary collision vertex and used for ”start
time” of other fast-timing detectors, such as TOF and Muon Telescope Detector (MTD). VPD
had been upgraded from pseudo Vertex Position Detector (pVPD) which is 2 × 3 channel
detector. In heavy-ion collision experiment, a lot of photons from π0 are produced and stream
outwards which are very close to the beam pipe. The VPD can measure these photons. The
VPD consists of two identical detector assemblies which are shown in Fig. 3.9. These assemblies
are located symmetrically and distance from the center of STAR is 5.7 m, which cover 4.24 <
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Figure 2.6: 1/� as a function of momentum, measured in Run 9 at
p
sNN = 200 GeV in p+p

collisions [17].

Figure 2.7: A two-side view on the MRPC detector [18].
Figure 3.7: The two side view of the MRPC [39].

TJH: DOE TOF Review 2006, 9/25-26 BNL
6

STARSTAR

π/K separation  to p = 1.6 GeV/c (0.7 for TPC Alone)   

(π+K)/p to p = 3 GeV/c (1.2 for TPC Alone)

Module design is well proven with discreet electronics and 
prototype final electronics

Figure 3.8: Inverse velocity as a function of momentum of the particles [40].
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minum outer cylinder outside by several layers of Kapton tape. The output
coaxial connector shield is isolated from the detector housing and the high
voltage ground but is indirectly connected via a 1 kΩ resistor. This prevents
the (inductive) shield of the coaxial signal cable from forming an undesir-
able resonant circuit with the (capacitive) electrostatic shield and detector
housing while maintaining the high voltage ground return path.

Each VPD assembly consists of two rings of readout detectors and is
mounted to the I-beam that supports the STAR beam pipe. A front view
of one of the VPD assemblies is shown in Figure 2. The outer diameter of
the beam pipe at this distance is five inches. An assembly exists as two
semi-annular “clam-shells” that enclose the beam pipe. These are bolted
together and are held in place by Delrin support blocks which attach to a
horizontal mount plate which is clamped to the beam pipe support I-beam.
The beam pipe and I-beam are at a different (dirty) electrical ground than
the experiment, so the Delrin support blocks both hold the assembly in place
and electrically isolate it.

front and back plates

beam pipe

detector

support block

beam pipe support

mount plate

clamp

Figure 2: On the left is a schematic front view of a VPD assembly, and on the right is a
photograph of the two VPD assemblies. A one foot long ruler is shown for scale on the
right.

The two assemblies are mounted symmetrically with respect to the center
of STAR at a distance of 5.7 m. The nineteen detectors in each assembly
subtend approximately half of the solid angle in the pseudo-rapidity range
of 4.24≤η≤5.1. When viewed from the rear and looking towards the center
of STAR, the detectors are numbered 1-10(11-19) counter-clockwise starting

5

Figure 3.9: A Schematic front view of the VPD (left). A Photograph of the VPD [41].

η < 5.1. Each assembly consists of 19 detectors and one of them is shown at Fig. 3.10. The
detector consist of 0.25 inch (6.35 mm) Pb converter, 1 cm thick scintillator, photomultiplier
tube (PMT) and so on.

The vertex position along the bean pipe (Zvtx) can be determined by

Zvtx = c(Teast − Twest)/2, (3.7)

2.1. Detectors

Each VPD assembly consists of nineteen detectors, a side view of which
is shown in Figure 1. Each detector housing is a 2 inch outer diameter and
0.049 inch thick aluminum cylinder with 3/8 inch thick aluminum front and
back caps. Inside this cylinder is a 0.25 inch non-conducting spacer, then the
active elements consisting of a 0.25 inch (1.13 radiation lengths) Pb converter,
and a 1 cm thick scintillator (Eljen EJ-204) coupled to a 1.5 inch diameter
Hamamatsu R-5946 mesh dynode PMT via RTV-615 optically transparent
silicone adhesive. The PMTs used in the VPD were taken from the TOFp
detector [2] after it was decommissioned in 2005.

Base           R5946 PMT                          scint  Pb 

electrostatic shield
Kapton tape

RTV-615
lead wire
spacerback cap

front cap

BNC

SHV

Figure 1: A schematic side view of VPD detector. The signal and high voltage connectors
on the back cap are not shown.

The PMT dynode voltages are provided by a conventional linear resistive
base. An initial version of these bases was used in the 2007 RHIC run, and
the detectors performed well, but there was some “ringing” in the trailing
edge of the PMT line shapes. This slightly complicated the offline slewing
corrections, but did not affect the timing performance. In 2008, these bases
were revised. No changes were made to the component values or connections,
but the placement of these components was revised to minimize the lengths
of the traces inside each PMT base circuit board. The excessive trace lengths
in the previous version of the bases resulted in enough distributed inductance
to cause the trailing edge ringing, which was completely removed in the final
bases.

A wire connects the PMT cathode pin to a 0.001 inch thick aluminum
cylinder which extends past the active elements. Another wire is used to
connect the aluminum cylinder to the lead converter. In this way, the active
elements are enclosed on all but one side by an electrostatic shield. This
shield is electrically isolated from the active elements inside and the alu-
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Figure 3.10: A Schematic view of the VPD [41].

where Teast and Twest are the times measured by east and west side VPD assemblies respec-
tively. c represents the speed of light. Start time can be also determined by

Tstart = (Teast + Twest)/2− L/c, (3.8)

where L is the distance between assembly and the center of STAR. The minimum bias trigger
requires at least one VPD channel on each side is lit in an event. Fig. 3.13 shows the single
detector resolution as a function of VPD channel number. The mean value of the single detector
is about 94 ps at

√
sNN = 200 GeV in Au+Au collisions and increase to 150 ps for lower energy

Au+Au and p+p collisions. This is because the number of prompt particles which hit the
detector and the number of channels lit by prompt particles are larger at

√
sNN = 200 GeV in

Au+Au collision compared with the lower energy collisions. The vertex resolution Zvtx can be
estimated by using single detector time resolution as
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σ(Zvtx) = (2/c)σ∆T = (σ/
√
2)σT = (c/

√
2)σ

√
N, (3.9)

where T represents Teast or Twest, σT is the resolution of T , σ0 is the single detector time
resolution. σT is the resolution of the Teast − Twest. From Eq. (3.9), the resolution become
σ0/

√
M where M is the number of VPD channel lit. Therefore, the start time resolution is

20-30 ps in Au+Au collisions at
√
sNN = 200 GeV. This start time resolution (20-30 ps) is

better than stop time resolution of TOF (8̃0 ps) and MTD (100 ps). In p+p collisions, the start
time resolution is about 80 ps.

VPD Channel
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σ〈p+p 510GeV 2013,   

Figure 5: The single detector resolution versus the VPD channel number for a few recent
RHIC beams and energies. The results for the VPD detectors on the west(east) are shown
in the x-axis range 0-18(19-37).

resolution from full-energy Au+Au to the lower energy Au+Au and p+p
collisions reflects the fact that the VPD is doing multiple-particle timing
(per detector channel) in the highest energy Au+Au collisions and there is a
gradual evolution to single-particle timing in p+p and lower energy Au+Au
collisions.

The resolution by which the VPD measures the start time needed by the
TOF and MTD detectors, i.e. equation (2), goes like ∼σ0/

√
M where M

is the total number of VPD channels lit by prompt particles in an event.
In full-energy Au+Au collisions, the start time resolution is observed to be
20-30 ps, which is essentially negligible compared to the stop time resolution
of the TOF(MTD) detectors of ∼80(100) ps [3]. In p+p collisions, the VPD
start time resolution is approximately 80 ps, as for those beams σ0 is ∼150
ps and M≈3.

The resolution by which the VPD measures the primary vertex location is
determined by comparing the VPD’s measurement, ZV PD

vtx (i.e. equation (1),
to that obtained from the primary tracks reconstructed in the TPC, ZTPC

vtx .
These two quantities are plotted in Figure 6 for 510 GeV p+p collisions (left
frame) and 200 GeV Au+Au collisions (right frame). The insets in each frame
depict the difference ∆Z = ZV PD

vtx − ZTPC
vtx and Gaussian fits to determine

the vertex resolution. The standard deviations of these distributions obtained
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Figure 3.11: Resolution of the single detector versus VPD channel number [41].

Fig.3.12 shows the correlation between primary vertex position measured by VFC (ZV PD
vtx )

and TPC (ZTPC
vtx ) in 510 GeV p + p collision and 200 GeV Au+Au collision. The vertex

resolutions are determined by Gaussian fitting to the ZV PD
vtx −ZTPC

vtx . As a results of the fitting,
the vertex resolution is ∼1 cm at 200 GeV Au+Au collisions and ∼2.4 cm in 510 GeV p+p
collisions.

3.2.4 Zero Degree Calorimeter

Zero Degree Calorimeter (ZDC) is the hadron calorimeter which is used for the minimum bias
trigger and luminosity monitor. ZDC can measure neutron which is emitted within the cone
along beam direction. Fig. 3.9 shows the plane view of the collision region and view of the
ZDC location. ZDC is located at 18 m from center of the STAR. Protons and other charged
particles are deflected by Dipole magnet. In addition, electro magnetic emission into the ZDC
is predicted to be negligible. Therefore, only neutrons are considered to be detected by ZDC in
this region.

Fig. 3.14 shows the mechanical design of Tungsten modules of ZDC. If neutrons are injected
into the module, neutrons lose their energies in Tungsten module and emit Cerenkov light. The
optical fibers only transport Cerenkov light if emitted light is aligned with the fiber axis and
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Figure 6: The primary vertex position along the beam pipe measured by the VPD, ZV PD
vtx ,

versus the same position as obtained using the primary tracks reconstructed in the TPC,
ZTPC
vtx in 510 GeV p+p collisions (left frame) and 200 GeV Au+Au collisions (right frame).

The insets depict the difference ∆Z = ZV PD
vtx -ZTPC

vtx which allows the extraction of the
VPD’s Zvtx resolution as the standard deviation of the difference distributions.

from the fits are typically ∼2.4 cm and ∼1 cm in 510 GeV p+p collisions
and 200 GeV Au+Au collisions, respectively.

4. Summary and conclusions

The 2×3 channel “pVPD” [2] vertex and start-timing detector in the
STAR experiment at RHIC has been replaced by a 2×19 channel detector
in the same acceptance. This Vertex Position Detector (VPD) exists as two
identical assemblies, one on each side of STAR, very close to the beam pipe
and ∼5.7 m from the center of STAR. The readout channels in each assembly
include a Pb converter followed by a fast plastic scintillator and a mesh dyn-
ode PMT. The PMT signals are digitized by two different sets of electronics
for use in the STAR Level-0 trigger to select minimum bias collisions, to
constrain the location of the primary collision vertex along the beam pipe,
and to provide the start time needed by other fast timing detectors in STAR.

The system must be configured for each RHIC beam separately to provide
a consistent performance despite the wide range of beam particles (protons to
Au) and beam energies (7.7 to 510 GeV) provided by the RHIC. The slewing
and offset corrections are performed using an iterative procedure and require
a careful rejection of outlier times from non-prompt particles.

The single-detector resolution of the VPD, σ0, is approximately 95 ps in
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Figure 3.12: Correlation between primary vertex position measured by VFC (ZV PD
vtx ) and TPC

(ZTPC
vtx ) in 510 GeV p+ p collision (left) and 200 GeV Au+Au collision(right) [41].

Fig. 1. Plan view of the collision region and (section A-A) ”beam’s eye” view
of the zdc location indicating deflection of protons and charged fragments ( with
Z/A∼ 1 downstream of the ”DX” Dipole magnet.

magnetic energy emission into this region is predicted to be negligible so this
measurement is not emphasized in our design. Since the spatial distribution of
neutrons emitted in the fragmentation region carries only limited information
about the collision, the calorimeters are built without transverse segmentation.

The Forward Energy resolution goal was determined by the need to cleanly
resolve the single neutron peak in peripheral nuclear collisions. The natural
energy spread of emitted single neutrons[1] being approximately 10% a reso-
lution ofσE

E
≤ 20% at En= 100 GeVappeared reasonable.

The limited available space between the RHIC beams at the ZDC location
imposes the most stringent constraint on the calorimeter design. As can be
seen from Figure 1, the total width of the calorimeters is only cannot exceed
10 cm (equal to 1 nuclear interaction length (ΛI) in tungsten). We designed
the ZDC’s to minimize the loss in energy resolution due to shower leakage,
which can cause fluctuation in measured shower energy through dependence
on position of impact and random fluctuations in shower development.

Finally, the ZDC’s are required to withstand a dose of ∼ 105 rad., which is
the expected exposure during several years of RHIC operation[3].

2

Figure 3.13: Plane view of the ZDC [42].
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most sensitive if angle is about 45◦. Thus, the fibers and Tungsten plates are fixed to 45◦

relative to the beam direction. Then, signal is read by PMT.

Table 3
Calculated energy resolution of ZDC’s

Absorber PhEls “e/h” Stochastic Constant

per 100Gev ratio term(%) term(%)

W (2.5mm) 1036 1.79 69.6±7.9 10.1±0.7

W(5.0mm) 518 1.78 84.6±4.8 9.1±0.5

W(10mm) 256 1.78 92.4±8.2 8.8±0.6

Cu(10mm) 611 2.01 111.7±7.0 9.3±0.6

Pb(10mm) 422 1.80 91.0±8.9 9.5±0.6

Fig. 5. Mechanical design of the production Tungsten Modules.Dimensions shown
are in mm.

For the prototype W modules we obtained 2.5 mm thick cast plates from a
Russian manufacturer and bonded them in pairs. For the production mod-
ules we obtained machined plates of tungsten alloy with threaded mounting
holes from a US manufacturer[10]. The thickness uniformity of our plates is

8

Figure 3.14: Structure of the Tungsten Modules used for ZDC [42].
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Chapter 4

Data analysis

In this chapter, data set and analysis details are introduced.

4.1 Data set

4.1.1 C6 analysis

(1) Experimental data

Analysis has been done in Au+Au collisions at
√
sNN = 54 and 200 GeV for C6 analysis. The

data of
√
sNN = 200 GeV were taken during 2010 and 2011 and the data of

√
sNN = 54 GeV

were taken in 2017. The data which was taken in 2010 is called ”Run10” data. There are several
”Trigger ID” which correspond to the period and date of the experiment. For example, Trigger
ID = 350003 in Run11 was taken during Jun 3rd to Jun 28th, 2011. If detector conditions or
systems are changed, trigger ID are also changed. In C6 analysis, data analysis has been done
for each trigger ID for the consistency check in this thesis.

Run name, Trigger ID and number of events (Million) after run and event selections are
shown as follows. Details about good run and event selections are explained in the next section.
Tab.4.1 shows the data set of Run17,

√
sNN = 54 GeV data using minimum bias trigger which are

determined by ZDC and VFC. Tab.4.2 shows the data set in Run11 and Run10 using minimum
bias trigger. In addition to minimum bias trigger , central trigger data has been analyzed in
Run10. Tab.4.3 shows the number of event after event selection in Run10 and Run11 including
central trigger.

Table 4.1: Data set (
√
sNN = 54 GeV)

Run name Trigger ID NEvnet (Million)

Run17 580001 61

Run17 580021 482
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Table 4.2: Data set (
√
sNN = 200 GeV, Minimum bias)

Run name Trigger ID NEvent (Million)

Run11 350003 200

Run11 350013 74

Run11 350023 15

Run11 350033 12

Run11 350043 187

Run10 260001 91

Run10 260011 24

Run10 260021 79

Run10 260031 45

Table 4.3: Number of event at
√
sNN = 200 GeV

Run Trigger type Centrality NEvent (Million)

Run10 Minimum bias trigger 10-80% 160

Run10 Central trigger 0-10% 200

Run11 Minimum bias trigger 0-80% 480

(2) UrQMD model simulation

In addition to the experimental data, the data of the Ultra-Relativistic Quantum Molecular Dy-
namics (UrQMD) model simulation [43, 44] has been analyzed. The UrQMD is the microscopic
transport model which is based on hadron-hadron scattering, and can describe the excitation
and decay of hadronic resonances and strings. In this thesis, the data of UrQMD model in
Au+Au collision at

√
sNN = 200 GeV is used. The number of events are approximately 45

Million after event selections. The analysis details for UrQMD, which are event selection, track
cut, centrality definition, etc., are the same as experimental data which are explained at the
following section.
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4.1.2 ∆η analysis

In ∆η analysis, analysis has been done in Au+Au collisions at
√
sNN = 7.7, 11.5, 14.5, 19.6, 27,

39, 62.4 and 200 GeV. Collision energy, Run name, and number of events (Million) after event
selection are shown as follows. Table 4.1 shows the data used for ∆η analysis.

Table 4.4: Data set used for ∆η analysis√
sNN Run name NEvent (Million)

200 Run11 97.8

62.4 Run10 50.4

39 Run10 85.3

27 Run11 27.5

19.6 Run11 15.5

14.5 Run14 12.0

11.5 Run10 2.57

7.7 Run10 1.55

47



4.1.3 VFC study

In VFC study, we use two models, simple toy model and UrQMD model simulations. In toy
model, 500 Million events for net-charge study and 100 Million events for net-proton study are
generated by Glauber simulation. The data set of the UrQMD model is the same as C6 analysis.

4.2 Run selection

Run by run QA has been done, and the outlier runs of 3σ were rejected as bad runs. ⟨pT ⟩,
⟨η⟩, ⟨ϕ⟩, ⟨dca⟩ and ⟨Refmult⟩ are measured for each trigger ID and used for evaluation of 3σ.
Refmult is defined by the multiplicity counted in |η| < 0.5. Same good run list is used between
minimum bias trigger and the central trigger in Run10. Fig. 4.1 shows the run by run mean
value of ⟨pT ⟩, ⟨η⟩, ⟨ϕ⟩, ⟨dca⟩ and ⟨Refmult⟩ in Run11

√
sNN = 200 GeV. Dotted line represent

the 3σ for each trigger ID.
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Figure 4.1: Run by run QA for Run11
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4.3 Event selection

Event selection has been done by the following cuts.

Table 4.5: Event selection√
sNN (GeV) |Vz| |Vr| |VpdVz −Vz | Pile-up events cut

200 30 2 4 Tofmatched < 0.46Refmult− 10

62.4 30 2 4 Tofmatched < 0.46Refmult− 10

54 30 2 4 Tofmatched < 0.46Refmult− 10

39 30 2 4 Tofmatched < 0.46Refmult− 10

27 30 2 - Tofmatched < 0.46Refmult− 10

19.6 30 2 - Tofmatched < 0.46Refmult− 10

14.5 30 1 - Tofmatched < 0.71Refmult− 10.2

11.5 30 2 - Tofmatched < 0.46Refmult− 10

7.7 30 2 - Tofmatched < 0.46Refmult− 10

In Tab. 4.5, V 2
r = V 2

x + (Vy + 0.89)2 at 14.5GeV and V 2
r = V 2

x + V 2
y at the other energies.

Vi represents the vertex position along to i-axis determined by TPC, and VpdVz is the
vertex position along to z-axis determined by VPD. (a) to (c) in Fig. 4.2 show the distribution
of event-by-event Vz, Vxy and Vz−VpdVz respectively. Red line represents the upper or lower
limit used for the event selection written in Tab. 4.5. (d) in Fig. 4.2 shows the correlation
between Refmult and TOF matched track. Events under the red line were cut in order to
remove pile-up events.
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Figure 4.2: (a)z-vertex measured by TPC (b)Vertex in xy-plane measured by TPC (c)Difference
between z-vertex measured by TPC and VPD (d)Correlation between Refmult and TOF
matched track at

√
sNN = 200 GeV in Run11, Trigger ID = 350043
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4.4 Track cut

Track cuts are shown in Tab. 4.6.

Table 4.6: Track cut
η -0.5 to 0.5

nHitsFit >20

DCA <1 cm

Track quality cut >0.52

nHitsdedx >10

Fig. 4.3 shows the distribution of η, DCA, nHitsFit, nHitsdedx and Track quality respec-
tively. Definition of these values are written in the caption of Fig. 4.3.

Red line represents the upper or lower limit of track cut. Exceptionally, nHitsdedx>5 has
been applied at

√
sNN = 14.5 GeV.
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Figure 4.3: (a)Pseudo-rapidity distribution (b)Distance of Closest Approach (DCA) distribution
(c)Number of hit points in TPC track used for reconstruction (d)Number of hit points in TPC
track used for calculating energy loss (e)Distribution of the Track quality, which is nHitsFit
divided by maximum number of nHitsFit, at

√
sNN = 200 GeV in Run11, Trigger ID = 350043.
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4.5 Particle Identification

As mentioned in Chapter. 1, efficiency corrections for each particle species separately, such as π,
K, and p, are important to calculate true efficiency corrected cumulant in sixth-order fluctuation
analysis. Therefore, particle identification (PID) is essential to this analysis whereas PID had
not been done in published net-charge analysis. PID is done by using energy loss and momentum
measured by TPC. Figure (a) in Fig. 4.4 is dE/dx as a function of p/q, where q is a sign of the
charged particle. π, K, and p can be separated at lower pT regions (p < 1 GeV/c). PID has
been done by 2σ cut for each pT regions. However, as already mentioned in Chapter. 3, PID
does not work well at higher pT regions (p > 1 GeV/c) due to the contamination from other
particle species. Then, TOF is used for PID at higher pT regions in addition to TPC. Figure (b)
in Fig. 4.4 shows the m2 as a function of p/q measured by TOF. PID has been done as following
cuts. In proton PID, 0.2 < pT < 0.4 GeV/c is not used because of the spallation protons which

Table 4.7: Particle Identification
π K p

pT (TPC) 0.2 to 0.5 GeV/c 0.2 to 0.4 GeV/c 0.4 to 0.8 GeV/c

pT (TPC+TOF) 0.5 to 1.6 GeV/c 0.4 to 1.6 GeV/c 0.8 to 2 GeV/c

PID(TPC) nsigmapion < 2 nsigmakaon < 2 nsigmaproton < 2

PID(TOF) −0.15 < m2 < 0.14 0.14 < m2 < 0.4 0.6 < m2 < 1.2

are generated by interaction with the beam pipe. pT < 0.2 was also not used due to the low
tracking efficiencies.

Figure 4.4: (a)dE/dx as a function of p/q measured by TPC in Run11, Trigger ID = 350043.
(b)m2 as a function of p/q measured by TOF in Run11, Trigger ID = 350043. Red line represent
the cut parameters written in Tab. 4.7.
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4.6 Centrality Determination

In this section, centrality is introduced and explain how to define centralities. We assume all
nucleons propagate along parallel in heavy-ion collisions. The nucleons which interact with each
other are called ”participant”, and the nucleons which do not meet any other nucleons are called
”spectator”. Number of participants are expressed as NW or Npart and the number of collisions
are expressed as Ncorr in this thesis. A length of centers of two nuclei which is projected in
x-y plane is defined as impact parameter (b). The impact parameter determine the collision
geometry but can not be measured by experiment directly. Fig. 4.5 shows the before and after
heavy ion collision with impact parameter b.

Elliptic Flow: A Brief Review 4

2. Event Characterization

Spectators

Participants

b

before collision after collision

Figure 2. Left: The two heavy-ions before collision with impact parameter b. Right:
The spectators continue una↵ected, while in the participant zone particle production
takes place.

Heavy-ions are extended objects and the system created in a head-on collision

is di↵erent from that in a peripheral collision. To study the properties of the

created system, collisions are therefore categorized by their centrality. Theoretically

the centrality is defined by the impact parameter b (see Fig. 2) which, however,

cannot be directly observed. Experimentally, the collision centrality can be inferred
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Figure 3. a) Charged particle distribution from Pb-Pb collisions at
p
sNN = 2.76 TeV

measured with ALICE, showing a classification in centrality percentiles (from [20]).
b) Number of participating nucleons Npart and binary collisions Nbin versus impact
parameter for Pb-Pb and Au-Au collisions at

p
sNN = 2.76 and 0.2 TeV, respectively.

from the measured particle multiplicities, given the assumption that the multiplicity

is a monotonic function of b. The centrality is then characterized by the fraction,

⇡b2/⇡(2RA)2, of the geometrical cross-section with RA the nuclear radius (see Fig. 3a).

Figure 4.5: Before and after heavy-ion collision with impact parameter b [45].

Experimentally, centrality is often used which corresponds to b. The centrality have the
following relation [46],

c(N) ≃ πb2(N)

σ
, (4.1)

where σ is total inelastic nucleus-nucleus cross section. c(N) is the centrality with the mul-
tiplicity N and b(N) is the impact parameter when mean number of multiplicity is N . If we
consider identical nuclei, c ≃ b2/(4R2) where R is the length radii of the nuclei and collision
occurs only if b < 2R.

4.6.1 Auto-correlation Effect

In this thesis, charged particles used for net-charge analysis and multiplicity used for centrality
determination are measured in different kinematic window in order to avoid auto-correlation.
Fig. 4.6 and Fig. 4.7 show the Sσ and κσ2 of net-proton distribution as a function of centralities
in Au+Au collisions at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV in UrQMD

simulation for two different centrality determination [32]. Centrality is defined by charged
Kaon and pion in black marker and defined by all charged particles including protons in square
the blue marker results. It can be seen that results of blue markers are suppressed by auto-
correlation effect comparing to black markers.

In this thesis, cumulants and cumulant ratios of net-charge distributions are measured in
|η| < 0.5 and the multiplicities used for the centrality determination are measured in 0.5 <
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Figure 4.6: Centrality dependence of Sσ in Au+Au collisions at
√
sNN = 7.7, 11.5, 14.5, 19.6,

27, 39, 62.4 and 200 GeV in UrQMD simulation with two different centrality determinations.
[32]
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Figure 4.7: Centrality dependence of κσ2 in Au+Au collisions at
√
sNN = 7.7, 11.5, 14.5, 19.6,

27, 39, 62.4 and 200 GeV in UrQMD simulation with two different centrality determinations.
[32]
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|η| < 1. We call this multiplicity used for centrality determination as ”Refmult2”. Refmult2
has been measured by following cuts.

Table 4.8: Refmult2
|η| >0.5

nhitsdedx >10

Refmult2 depends on z-vertex and luminosity, which should be correct. Detail about these
correction methods are shown in Appendix.

4.6.2 Glauber model

The most simple way to determine centrality is dividing multiplicity distribution into the same
number of events class. However, this definition is not perfect because ultra peripheral colli-
sion events are not triggered by Minimum Bias trigger. Thus, Glauber simulation is done for
centrality determinations.

The parameters used for the Glauber simulation are shown in the following table.

Table 4.9: Parameters used for Glauber simulation in Au+Au collision at
√
sNN = 200 GeV.

Number of nucleon 197

Width 0.535

Radius 6.4 (fm)

σ 42 (mb)

σ is the cross section and width is the parameter of Wood-saxon. Fig. 4.8 shows the picture
of collision event described by Glauber model which is projected to x-y plane. Blue and black
markers represent the nucleons of two different nuclei and red markers are the participants. At
Fig. 4.8, impact parameter b = 10.
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Figure 4.8: Heavy-ion collision event described by Glauber model which is projected to x-y
plane in Au+Au collisions at

√
sNN = 200 GeV. Impact parameter b = 10 fm in this event.
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By repeating these procedure, Npart and Ncoll are obtained. Fig. (4.9) shows the correlation
between Npart and Ncoll by Glauber simulation.
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Figure 4.9: Correlation between Npart and Ncoll by Glauber simulation in Au+Au collisions at√
sNN = 200 GeV. Number of events are 500 Million.

Then, ”two component model” is introduced. In two component model, initial ”source” is
described by

Nsource = (1− x)
Npart

2
+ xNcoll, (4.2)

where x is the parameter of the two component model, and x = 0.13 is applied in this thesis.
We suppose final state multiplicity is produced from each source independently, which is call
Independent Particle Production (IPP) model shown at Fig. 4.10. The NBD is employed to
implement the source-by-source multiplicity fluctuations.

Nucleus1 Nucleus2

: initial source
: final state multiplicity

Figure 4.10: Image of Independent Particle Production (IPP) model.

Fig.4.11 shows the results of Glauber fitting (left) and ratio of data points to fitting results
(right).

npp and k are the parameters of NBD at Eq. (2.67), and npp corresponds to the m in
Eq. (2.67). The parameter efficiency corresponds to the tracking efficiency.

Fig. 4.12 shows the Refmult2 distribution for each centrality bins which are represented as
different color.
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Figure 4.12: Refmult2 distribution for each centrality bins at
√
sNN = 200 GeV in Au+Au

collisions in Run11, Trigger ID = 350043.
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4.7 Efficiency correction

TPC tracking efficiency is estimated by an embedding simulation. Through the simulation, we
embed an identified single charged particle into experimental data in detector level in order to
see whether the particle is reconstructed or not. Then, tracking efficiency is estimated by

ϵ =
Nmatched

NMC
. (4.3)

NMC and NMatched represent the number of embedded particles and reconstructed particles
respectively. Fig. 4.13 shows pT dependence of TPC tracking efficiencies by the embedding
simulation for each particle species. Red and blue symbol represent positively and negatively
charged particles respectively. Upper limit and lower limit of pT are written in dotted red
line. In Fig. 4.1, mean Refmult is different among different trigger ID in Run11. Therefore,
embedding simulation and correction have been done for each trigger ID separately in Run11.
In Run10, mean Refmult is not largely changed among different trigger ID, which are shown
in Appendix. Therefore, the same TPC tracking efficiencies have been applied in Run10. In
Run11, efficiencies of

√
sNN = 62.4 GeV were applied as a proxy for that of

√
sNN = 54 GeV.
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Figure 4.13: pT dependence of TPC tracking efficiencies by the embedding simulation in Run10.

Refmult2 dependent efficiencies are estimated by integrating pT as following formula,

ϵi =

∫
ϵi(pT )pT f(pT )dpT∫

pT f(pT )dpT
, (4.4)

where f(pT ) is the pT spectra for each particle species and centrality shown in Fig. (4.14). f(pT )
is referred from the spectra paper [48][49]. TPC tracking efficiencies used in ∆η analysis are
shown in appendix. Fig. 4.14 shows the pT spectra at

√
sNN = 200 GeV.
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FIG. 1. (Color online) Identified particle transverse momentum
spectra in Au + Au collisions at

√
s

NN
= 200 GeV in 0–10% central

collisions (a) and in peripheral 60–80% collisions (b). The symbols
represent experiment data points. The solid curves represent the TBW
fit and the dashed lines are BGBW calculations with β and T values
from Ref. [5]. Only fits to the particles are shown because both models
have the same spectral shapes for particles and antiparticles.

choose the Minuit in Root [49] to perform a least-χ2 fit used
in Ref. [1]. Figure 1 shows the pT spectrum data together
with our fit results in two selected centrality bins (0–10%
and 60–80%) in Au + Au collisions. The fit parameters and
χ2/DoF are tabulated in Table I. As stated earlier in our model’s
third assumption, surface emission could become important at
high pT ; we limit our fits to pT < 3 GeV/c to avoid this
region, which still extends the fit range well beyond previous
BGBW fits. The curves from our model generally describe
the data very well, especially in central Au + Au collisions.
For peripheral Au + Au collisions, the meson spectra are well
described by the model while the baryons are in general
overpredicted at higher pT . On the other hand, the χ2/DoF
show good fits in all cases. The main results are as follows.

(i) (q − 1), a measure of the degree of nonequilibrium,
decreases by a factor of 5 from 0.086 to 0.018. This
means the power in the mT power law increases
from about 12 to 56, attaining an almost Boltzman
distribution.

(ii) T , the average temperature of the local source, shows
a small increase from 114 to 122 MeV. This trend is
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FIG. 2. (Color online) The fit parameters T and β as a function
of (q − 1). Each block is one-σ contour from the error matrix of the
TBW fit for a given centrality of Au + Au collisions.

in contrast to the conventional BGBW result, where a
decrease of temperature was observed [38].

(iii) β, the average flow velocity, increases from 0 in
peripheral to 0.47c in central Au + Au collisions.

Figure 2 shows the temperature and flow velocity versus
(q − 1) for Au + Au collisions. Each shaded region represents
a one-σ contour from the error matrix obtained from the TBW
fit for a given centrality. The dependence is clearly nonlinear
and has a negative correlation. There is a jump in flow velocity
from zero in p + p and 60–80% Au + Au centrality to 0.28 at
40–60% Au + Au centrality, coinciding with the transition be-
havior in several other observables [50]. We fit the distributions
with a quadratics and obtain T = (0.123 ± 0.0014) − (1.2 ±
0.4)(q − 1)2 and β = (0.49 ± 0.01) − (61 ± 5)(q − 1)2, as
shown in the figure.

Because the TBW model can be used to describe systems
at nonequilibrium, it is natural to extend the fit to p + p
collisions. However, a very poor χ2/DoF was obtained if we
include all of the mesons and baryons in a common fit. Instead,
two separate groups of mesons and baryons show good fits.
Figure 3 shows the results of the fits together with the data
points. In both cases, the flow velocity was set at the lower
limit of β = 0 as was also independently verified if β was set

TABLE I. Values of parameters from TBW fit to identified particle transverse spectra in Au + Au
collisions of different centralities and in p + p collisions at RHIC. Quoted errors are quadratical
sums of statistical and uncorrelated systematic errors. The limits of β are set to [0, 0.7].

Centrality β T q − 1 χ 2/DoF

0–10% 0.470 ± 0.009 0.122 ± 0.002 0.018 ± 0.005 130/125
10–20% 0.475 ± 0.008 0.122 ± 0.002 0.015 ± 0.005 119/127
20–40% 0.441 ± 0.009 0.124 ± 0.002 0.024 ± 0.004 159/127
40–60% 0.282 ± 0.017 0.119 ± 0.002 0.066 ± 0.003 165/135
60–80% 0+0.05

−0 0.114 ± 0.003 0.086 ± 0.002 138/123
Meson pp 0 0.089 ± 0.004 0.100 ± 0.003 53/66
Baryon pp 0 0.097 ± 0.010 0.073 ± 0.005 55/73

051901-3

Figure 4.14: Identified particle transverse momentum spectra in Au+Au collisions at√
sNN = 200 GeV

TOF matching efficiencies which are measured by experiment are used as a efficiency of
TOF at high-pT region. Fig. 4.15 shows the Refmult2 dependence of TOF matching efficiencies
for each particle species.
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Figure 4.15: Refmult2 dependence of TOF matching efficiencies in Run10, Trigger ID = 260001

Fig. 4.16 shows the Refmult2 dependence of TPC and TPC+TOF efficiencies for each parti-
cle species in Run10. Solid line represent the TPC tracking efficiencies, and dotted line represent
the TPC+TOF efficiencies which are calculated by TPC efficiencies times TOF efficiencies.
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Figure 4.16: Refmult2 dependence of TPC and TPC+TOF efficiencies in Run10.

4.8 Factorial cumulant method

In fluctuation analysis, factorial moment method [50] is usually used to calculate the efficiency
corrected cumulants and cumulant ratios. However, CPU time by using factorial moment
method strongly depends on the number of efficiency bins, and it takes long CPU time if
number of efficiency bins are large like 6th-order cumulants analysis of net-charge.

Recently, factorial cumulant method has been proposed [26], and this method can reduce
CPU time if number of efficiency bins are large in higher-order cumulants analysis.

Cumulants up to the sixth-order are written as
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⟨Q⟩c = ⟨q(1,1)⟩c, (4.5)

⟨Q2⟩c = ⟨q2(1,1)⟩c + ⟨q(2,1)⟩c − ⟨q(2,2)⟩c, (4.6)

⟨Q3⟩c = ⟨q3(1,1)⟩c + 3⟨q(1,1)q(2,1)⟩c − 3⟨q(1,1)q(2,2)⟩c + ⟨q(3,1)⟩c − 3⟨q(3,2)⟩c + 2⟨q(3,3)⟩c, (4.7)

⟨Q4⟩c = ⟨q4(1,1)⟩c + 6⟨q2(1,1)q(2,2)⟩c − 6⟨q2(1,1)q(2,2)⟩c + 4⟨q(1,1)q(3,1)⟩c + 3⟨q2(2,1)⟩c
+3⟨q2(2,2)⟩c − 12⟨q(1,1)q(3,2)⟩c + 8⟨q(1,1)q(3,3)⟩c − 6⟨q(2,1)q(2,2)⟩c
+⟨q(4,1)⟩c − 7⟨q(4,2)⟩c + 12⟨q(4,3)⟩c − 6⟨q(4,4)⟩c, (4.8)

⟨Q5⟩c = ⟨q5(1,1)⟩c + 10⟨q3(1,1)q(2,1)⟩c − 10⟨q3(1,1)q(2,2)⟩c + 10⟨q2(1,1)q(3,1)⟩c − 30⟨q2(1,1)q(3,2)⟩c
+20⟨q2(1,1)q(3,3)⟩c + 15⟨q2(2,2)q(1,1)⟩c + 15⟨q2(2,1)q(1,1)⟩c − 30⟨q(1,1)q(2,1)q(2,2)⟩c
+5⟨q(1,1)q(4,1)⟩c − 35⟨q(1,1)q(4,2)⟩c + 60⟨q(1,1)q(4,3)⟩c − 30⟨q(1,1)q(4,4)⟩c
+10⟨q(2,1)q(3,1)⟩c − 30⟨q(2,1)q(3,2)⟩c + 20⟨q(2,1)q(3,3)⟩c
−10⟨q(2,2)q(3,1)⟩c + 30⟨q(2,2)q(3,2)⟩c − 20⟨q(2,2)q(3,3)⟩c
+⟨q(5,1)⟩c − 15⟨q(5,2)⟩c − 50⟨q(5,3)⟩c − 60⟨q(5,4)⟩c + 24⟨q(5,5)⟩c, (4.9)

⟨Q6⟩c = ⟨q6(1,1)⟩c + 15⟨q4(1,1)q(2,1)⟩c − 15⟨q4(1,1)q(2,2)⟩c + 20⟨q3(1,1)q(3,1)⟩c + 60⟨q3(1,1)q(3,2)⟩c
+40⟨q3(1,1)q(3,3)⟩c − 90⟨q2(1,1)q(2,2)q(2,1)⟩c + 45⟨q2(1,1)q

2
(2,1)⟩c + 45⟨q2(1,1)q

2
(2,2)⟩c

+15⟨q3(2,1)⟩c − 15⟨q3(2,2)⟩c + 15⟨q2(1,1)q(4,1)⟩c − 105⟨q2(1,1)q(4,2)⟩c + 180⟨q2(1,1)q(4,3)⟩c − 90⟨q2(1,1)q(4,4)⟩c
−45⟨q2(2,1)q(2,2)⟩c + 45⟨q2(2,2)q(2,1)⟩c + 60⟨q(1,1)q(2,1)q(3,1)⟩c − 180⟨q(1,1)q(2,1)q(3,2)⟩c
+120⟨q(1,1)q(2,1)q(3,3)⟩c − 60⟨q(1,1)q(2,2)q(3,1)⟩c + 180⟨q(1,1)q(2,2)q(3,2)⟩c − 120⟨q(1,1)q(2,2)q(3,3)⟩c
+6⟨q(1,1)q(5,1)⟩c − 90⟨q(1,1)q(5,2)⟩c + 300⟨q(1,1)q(5,3)⟩c − 360⟨q(1,1)q(5,4)⟩c + 144⟨q(1,1)q(5,5)⟩c
+15⟨q(2,1)q(4,1)⟩c − 105⟨q(2,1)q(4,2)⟩c + 180⟨q(2,1)q(4,3)⟩c − 90⟨q(2,1)q(4,4)⟩c
−15⟨q(2,2)q(4,1)⟩c + 105⟨q(2,2)q(4,2)⟩c − 180⟨q(2,2)q(4,3)⟩c + 90⟨q(2,2)q(4,4)⟩c
+10⟨q3(3,1)⟩c − 60⟨q(3,1)q(3,2)⟩c + 40⟨q(3,1)q(3,3)⟩c + 90⟨q2(3,2)⟩c − 120⟨q(3,2)q(3,3) + 40⟨q2(3,3)⟩c
+⟨q(6,1)⟩c − 31⟨q(6,2)⟩c + 180⟨q(6,3)⟩c − 390⟨q(6,4)⟩c + 360⟨q(6,5)⟩c − 120⟨q(6,6)⟩c, (4.10)

with

q(r,s) = q(ar/ps) =
M∑
i=1

arini

psi
, (4.11)

where M represents the number of efficiency bins and i corresponds to the each efficiency
bin. In net-charge analysis, ni, ai and pi are number of the charged particles, efficiency and
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sign of the charge respectively and M = 12 in C6 analysis. Q and q represents the efficiency
corrected and measured cumulants respectively.

Efficiency correction formula of factorial cumulants are easier than that of cumulants. In
this method, once measured cumulants are converted to the measured factorial cumulants, and
then efficiency corrections are applied. Then, corrected factorial cumulants are converted to the
corrected cumulants.
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4.9 Volume fluctuation

In this chapter, effects from Volume fluctuation (VF) are explained and two correction method,
Centrality Bin Width Correction (CBWC) and Volume Fluctuation Correction (VFC) are in-
troduced in order to eliminate the effect of VF. Then, we will discuss the validity of VFC by
using simple toy model and UrQMD model.

4.9.1 Centrality Bin Width Correction (CBWC)

In heavy-ion collision experiment, data analysis is done for each centrality. For example, 10%
centrality divisions are usually used. However, initial volume which corresponds to the number
participant nucleons (NW ) are different even in the same centrality bins like the following sketch.

Nucleus1 Nucleus2

Large initial volume 
Participant

0% 10%

Small initial volume 

0-10%  
centrality bin

Figure 4.17: Image of the initial volume difference in 0-10% centrality.

This initial Volume Fluctuation (VF) artificially enhance the cumulants.
In order to eliminate VF, Centrality Bin Width Correction (CBWC) has been applied for

experimental data in this thesis, and also applied in published results from STAR experiment.
In CBWC, cumulants for each centrality bin are calculated by taking weighted average for each
multiplicity bin as follows:

Cn =
∑
r

wrC(n,r), (4.12)

wr =
Nr∑
r Nr

, (4.13)

where C(n,r) is the nth-order cumulant in rth multiplicity bins for centrality determination.
Fig. 4.18 shows the centrality dependence of net-proton distributions in UrQMD model

simulation at BES-I energies. The open cross symbol represents the without CBWC and open
round and open star symbols are CBWC results. In star marker, weights are calculated by error
whereas number of events are used in open round marker. The blue dotted points show the
2.5% (32 divisions) centrality step results. The without CBWC results are enhanced from the
unity which is the statistical baseline of κσ2, and CBWC weighted by events can remove VF.
2.5% centrality step can also remove VF compared with the 10% step results. These results say
that CBWC weighted by events or 2.5% centrality divisions can eliminate the effect from VF.
Therefore, CBWC is usually used for eliminate VF.
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Figure 4.18: κσ2 of net-proton distributions as a function of centralities in UrQMD model
simulation in Au+Au collision at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV [32].

4.9.2 Volume Fluctuation Correction

As it is said in the previous sections, CBWC can reduce the VF. However, initial participant
(= Npart = NW ) fluctuation can not be eliminated even though we measure cumulants for each
multiplicity bin. Fig. 4.19 shows the correlation between number of participant and multiplicity
from Glauber simulation in Au+Au collisions at

√
sNN = 200 GeV for 10% (left), 5% (middle)

and 2.5%. If we choose 2.5% centrality step or one multiplicity bins, VF become smaller than
10% centrality step. However, there remain VF.

In VFC, we suppose IPP model whereas CBWC is the data driven method. In this model,
measured net-particle (∆N) is expressed as the sum of the net-particles from each source (∆n).
If we suppose NW is the number of sources, the moment generating function can be written as,

M∆N (θ) = [M∆n(θ)]
NW , (4.14)

where M∆N (θ) and M∆n(θ) represent the moment generating function of ∆N and ∆n distri-
butions respectively. Then, cumulants are given by the derivatives of the cumulant generating
function K∆N (θ) = ln (M∆N (θ)). Thus, up to the sixth-order cumulants are written as,

64



Figure 4.19: Correlation between number of participant and multiplicity from Glauber simula-
tion in Au+Au collisions at

√
sNN = 200 GeV for 10% (left), 5% (middle) and 2.5%

κ1(∆N) = ⟨NW ⟩κ1(∆n), (4.15)

κ2(∆N) = ⟨NW ⟩κ2(∆n) + ⟨∆n⟩2κ2(NW ), (4.16)

κ3(∆N) = ⟨NW ⟩κ3(∆n) + 3⟨∆n⟩κ2(∆n)κ2(NW ) + ⟨∆n⟩3κ3(NW ), (4.17)

κ4(∆N) = ⟨NW ⟩κ4(∆n) + 4⟨∆n⟩κ3(∆n)κ2(NW )

+ 3κ22(∆n)κ2(NW ) + 6⟨∆n⟩2κ2(∆n)κ3(NW ) + ⟨∆n⟩4κ4(NW ), (4.18)

κ5(∆N) = ⟨NW ⟩κ5(∆n) + {5κ4(∆n)κ1(∆n) + 10κ3(∆n)κ2(∆n)}κ2(NW )

+
{
10κ3(∆n)κ21(∆n) + 15κ22(∆n)κ1(∆n)

}
κ3(NW ) + 10κ2(∆n)κ31(∆n)κ4(NW )

+ κ51(∆n)κ5(NW ), (4.19)

κ6(∆N) = ⟨NW ⟩κ6(∆n) +
{
6κ5(∆n)κ1(∆n) + 15κ4(∆n)κ2(∆n) + 10κ23(∆n)

}
κ2(NW )

+
{
15κ4(∆n)κ21(∆n) + 60κ3(∆n)κ2(∆n)κ1(∆n) + 15κ32(∆n)

}
κ3(NW )

+
{
20κ3(∆n)κ31(∆n) + 45κ22(∆n)κ21(∆n)

}
κ4(NW ) + 15κ2(∆n)κ41(∆n)κ5(NW )

+ κ61(∆n)κ6(NW ), (4.20)

where κn(∆N) and κn(∆n) are the cumulants of ∆N and ∆n distributions respectively
[33][53]. From Eq. (4.16)-(4.20), κn(∆N) is not only written by the sum of the κn(∆n) but
also NW cumulant (κn(NW )) terms. These κn(NW ) terms represent the VF background which
should be subtracted from measured cumulants.

This correction method is call Volume Fluctuation Correction (VFC). In this thesis, validity
of VFC will be studied by using Toy model in net-charge case and UrQMD model in both
net-charge and net-proton cases.

(1) Toy model approach

From Eq. (4.16) to Eq. (4.20), VFC needs cumulants of NW which can not be measured exper-
imentally. In toy model approach, NW is estimated by Glauber simulation which is discussed
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in centrality determination section. Fig. 4.20 shows the NW distributions for each centrality
(top), and the second to the fourth-order NW cumulants (bottom) for 10% , 5% and 2.5% from
left to right by Glauber model simulation at

√
sNN = 200 GeV. Trends are changed around

central collisions because maximum value of NW is fixed. Participant fluctuation become larger
with number of bin divisions become small which means that VF in 2.5% centrality definition is
smaller than that in 10% definition. In Toy model approach, two independent Poisson distribu-
tions are generated which are used to calculate net-charge for each centrality. The parameters
of the Poisson distributions (λ+ and λ−̄) are determined that number of positively and nega-
tively charged particles (N+ and N−) describe the real experiment respectively like the following
formula,

λ+⟨NW ⟩ = N+, (4.21)

λ−⟨NW ⟩ = N−, (4.22)

(λ+ − λ+)⟨NW ⟩ = N+ −N−, (4.23)

⟨NW ⟩ is number of participant which is estimated by Glauber simulation. In Eq. (4.21)
to (4.23), mean values of NW are used. Thus, there are no VF. If we replace ⟨NW ⟩ to NW ,
measured cumulants of net-charge distributions include the VF.
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Figure 4.20: Number of participant distributions for each centrality (top) and second to fourth-
order cumulants (bottom) for 10% , 5% and 2.5% from left to right by Glauber model simulation
in Au+Au collisions at

√
sNN = 200 GeV.
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(2) UrQMD model approach

In net-charge analysis, analysis details, which are event selection, track cut, momentum and
pseudo-rapidity range, etc., are the same as the C6 analysis. In net-proton analysis, cumulants
are measured at |y| < 0.5, with the transverse momentum range 0.4 < pT < 2.0 GeV/c, and
the centrality is determined in |η| < 1 without proton and anti-proton, which is the same as
current net-proton cumulant analysis at STAR.

We also define various centralities by using different kinematic window for both net-charge
and net-proton cumulants analysis. Details are discussed in the following chapter. In toy model,
true cumulants, cumulants which do not include VF, can be calculated by using ⟨NW ⟩ instead of
NW , However, this method can not be used in UrQMD model. Therefore, we introduce CBWC
for each NW which we call ”CBWC-N”. In UrQMD simulation, NW can be obtained directly.
Then, cumulants are calculated for each NW bin like a standard CBWC method. In other
words, bin-by-bin cumulants are measured in NW dimension in CBWC-N whereas cumulants
are measured in multiplicity dimension in standard CBWC. If we suppose VF is caused from
NW fluctuation, we can remove VF by this CBWC-N method. We define two type of CBWC-N
method. At first definition, which we call ”definition1”, centralities are determined by charged
particle multiplicities, and then cumulants are calculated for each NW bin. At second definition,
which we call ”definition2”, centralities are determined by dividing NW distribution, and then
cumulants are calculated for each NW bin. The CBWC-N of the first definition depends on
how to determine centralities, such as η region and centrality resolution. On the other hand,
the second definition is only determined by NW distribution itself. Cumulants are measured for
each method and centrality definitions by using UrQMD approach, and compare to the results
of toy model.
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Figure 4.21: Correlation between number of participant and multiplicity in UrQMD model in
Au+Au collision at at

√
sNN = 200 GeV.
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4.10 Charge conservation correction

When we consider ∆η dependence of net-charge fluctuations, it is important to consider the
effect from charge conservation. When we expand an acceptance such as ∆η, cumulants become
smaller due to the charge conservation. It is obvious that the fluctuation is zero if we measure
all the charged particles with full acceptance because net-charge is ”conserved” value. In order
to correct this effect for D-measure, ν(+−,dyn) is corrected as

νcorr(+−,dyn) = ν(+−,dyn) +
4

⟨Ntotal⟩
, (4.24)

where νcorr(+−,dyn) is corrected ν(+−,dyn) and ⟨Ntotal⟩ is the multiplicity with full acceptance. Then,

corrected D-measure which is expressed as D′ is written by

D′ = νcorr(+−,dyn)⟨Nch⟩+ 4

= ν(+−,dyn)⟨Nch⟩+ 4
⟨Nch⟩
⟨Ntotal⟩

+ 4

= D + 4
⟨Nch⟩
⟨Ntotal⟩

. (4.25)

STAR experiment can not measure Ntotal because of TPC acceptance. Therefore, Ntotal is
estimated from different experiment such as PHOBOS [47] which has large acceptance (|η| <
5.4). The left hand side panel of Fig. 4.22 shows the ⟨Nch⟩/⟨Npart/2⟩ versus collision energy
from various experiments in most central collisions. From left hand side panel of Fig. 4.22,
Ntotal at

√
sNN = 19.6GeV, 62GeV and 200GeV are directly obtained. Ntotal at the other BES-I

energies are extracted from the fitting which is shown in right hand side panel of Fig. 4.22.
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over a wide range of energies [44,50,129,130] is shown in Fig. 11, along with
data from d+Au [57], p(p̄)+p, and e++e− annihilation into hadrons (the latter
two compiled from references in [131]). The d+Au value has also been divided
by the number of participant pairs. The nucleus-nucleus data are for central
collisions. However, this choice is inconsequential since, as will be discussed in
the following section, the total multiplicity per participant pair appears to be
approximately independent of centrality.
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Figure 4.22: ⟨Nch⟩/⟨Npart/2⟩ versus collision energy from various experiments [47] (left). Fitting
to the left graph (right).
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4.11 Statistical Errors

To evaluate statistical errors, Bootstrap method [51] is often used for the fluctuation analysis
[52]. Fig. 4.23 shows the schematic of the bootstrap process. If we want to estimate the
standard error of a statistic s(x), B bootstrap sample are generated from the original data.
Each bootstrap sample is generated by sampling ”with replacement” n times from the original
data set. The standard deviation of the s(x∗1) to s(x∗n) is the statistical error of s(x).

Figure 4.23: Schematic of the bootstrap process [51]

Fig. 4.24 shows the κσ2 of 50 samples arranged by order for three different error estimation
method, Delta theorem, Bootstrap and Sub-group [32]. The Sub-group method seems over
estimate the statistical uncertainties, but Delta theorem and Bootstrap seem to estimate the
errors correctly in all number of events.

Resampling has been done for more than 100 times in this thesis.
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FIG. 1. (Color online) κσ2 of 50 samples arranged by order, which are independently and
randomly generated from Skellam distribution with different number of events (0.01, 0.1, 1
million). The dashed lines are expectations value 1.

and can not be measured directly. This drawback in general can cause two effects in the moment
analysis of particle multiplicity distributions within finite centrality bin. One is the so called
centrality bin width effect [15], which is caused by volume variation within a finite centrality
bin size and the other one is centrality resolution effect, which is caused by the initial volume
fluctuations [20]. In the following two sub-sections, we will discuss those two effects caused by
volume fluctuation in detail with UrQMD model simulation and the corresponding methods to
address those effects.

5.1. Centrality Bin Width Effect (CBWE) and Correction
In heavy ion-collisions, the collision centrality can be explained as a percentage of the total
cross-section, such as 0-5% (most central) and 30-40% (semi-peripheral), which indicates the
fraction of a data sample relative to all possible collision geometries. It is usually determined by
an observable like the charged particle multiplicity, in which the smallest centrality bin is a single
multiplicity value. Generally, we report the results for a wider centrality bin, such as 0-5% and
5-10%, to have better statistical accuracy. But, before calculating various moments of particle
number distributions for one wide centrality bin, such as 0-5%, 5-10%, we should consider the so
called Centrality Bin Width Effect (CBWE) arising from the impact parameter (or volume)
variations due to the finite centrality bin. This effect must be eliminated, as an artificial
centrality dependence could be introduced due to finite centrality bin width. To demonstrate
this effect, we define the centrality by the charged kaon and pion multiplicities within |η| < 2 in
the UrQMD model calculations. This centrality definition is to avoid the auto-correlation and
centrality resolution effects in the net-proton moment analysis, which will be discussed later.
Before calculating various moments of particle number distributions for one wide centrality bin,
such as 0-5%, 5-10%, we should consider the so called Centrality Bin Width Effect (CBWE)
arising from the impact parameter (or volume) variations due to the finite centrality bin. This
effect must be eliminated, as an artificial centrality dependence could be introduced due to finite
centrality bin width.

To eliminate the centrality bin width effect, we have developed a technique called
Centrality Bin Width Correction (CBWC), to calculate the various moments of particle number

Figure 4.24: κσ2 of 50 samples arranged by order for three different error estimation method
[32]. κσ2 are calculated from Skellam distribution with different number of event, 0.01, 0.1 and
1 Million.

4.12 Systematic uncertainties

In order to estimate systematic uncertainties, following cuts have been changed.

Table 4.10: Parameters used for the systematic error estimations
dca 0.8, 1.0 (default), 1.2

nHitsFit -18, 20 (default), 22

nhitsdedx 8, 10 (default), 12

efficiency1 (pos+5%, neg+5%), (pos-5%, neg-5%)

efficiency2 (pos+0.3%, neg-0.3%), (pos-0.3%, neg+0.3%)

For example, (pos+5%, neg+5%) means that tracking efficiency of positively and negatively
charged particles are changed from (ϵpos, ϵneg) to (ϵpos ∗ 1.03, ϵneg ∗ 1.03). In case of efficiency1
in Tab. 4.10, positively and negatively charged particle efficiencies were changed to the same
directions simultaneously. On the other hand, the efficiencies were changed to the opposite
directions in case of efficiency2.

Fig. 4.25 shows the run index dependence of RufmultPos, RefmultNeg, RefmultNet and
Refmult at

√
sNN = 200 GeV in Run11, where RefmultPos and RefmultNeg are defined as the

positively and negatively charged particle multiplicities measured in |η| < 0.5. Refmult and
RefmultNet are defined as RefmultPos+RefmultNeg and RefmultPos-RefmultNeg respectively.
Red dotted line shows the mean values if efficiencies of poritively and negatively charged particles
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are changed 5% simultaneously. Blue and green dotted line show the mean values if efficiencies
of positively and negatively charged particles are changed 0.3% separately. Fig. 4.25 says that
efficiency2 in Tab.4.10 largely affect the net-charge but not affect the multiplicities.
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Figure 4.25: Run index dependence of RufmultPos, RefmultNeg, RefmultNet and Refmult at√
sNN = 200 GeV in Run11.

The systematic errors were estimated by,

RMSj =

√
1

n

∑
i

(Yi,j − Ydef )
2 (4.26)

Sys.Err =

√∑
j

(RMSj)2. (4.27)

Where Ydef represents the cumulant measured by using the default cut and Yi,j represents the
cumulant measured by using the different cut. j correspond to the index of the each parameter
and i correspond to the index of the changed variables. In this analysis, n = 2 in all cases.
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Chapter 5

Results and Discussion

5.1 Up to the sixth-order fluctuation

In this section, centrality dependence of up to the sixth-order cumulants of net-charge dis-
tributions in Au+Au collisions at

√
sNN = 54 and 200 GeV are shown, and compare to the

published net-charge results and preliminary net-proton results. As it is said at previous chap-
ter,

√
sNN = 200 GeV data was taken from 2010 to 2011 year. Therefore, detector conditions

are different among different year and trigger IDs. First, for consistency check, cumulants are
measured for each trigger ID. Then, cumulants of each trigger ID and each run are merged.

5.1.1 Cumulants

First, cumulants at
√
sNN = 200 GeV are shown. Fig. 5.1 shows the before and after efficiency

corrected first to the sixth-order cumulants and Nch as a function of centralities in Au+Au
collision at

√
sNN = 200 GeV in Run11, trigger ID = 350043. Nch is defined as ⟨N+ +N−⟩

whereas C1 is defined as ⟨N+ −N−⟩.
Cumulants are proportional to the mean number of the participant because of the additivity

of cumulants. After efficiency correction, statistical uncertainties become larger in all cases. It
is obvious that statistical uncertainty become larger with the order of the cumulants. Unless
otherwise noted, all the results which will be shown from now are efficiency corrected results.

Fig. 5.2 shows the first to the sixth-order cumulant and Nch as a function of centralities
in Au+Au collision at

√
sNN = 200 GeV for various systematic cuts. Trigger ID = 350043 in

Run11 data is used. (pos+3%, neg-3%) and (pos-3%, neg+3%) largely affect C1 but not largely
affect the other order cumulants.

Fig. (5.3) and Fig. (5.4) show the first to the sixth-order cumulant as a function of centralities
in Au+Au collision at

√
sNN = 200 GeV for each trigger ID in Run11 and Run10 respectively

including systematic uncertainties. Color difference represents the different trigger ID. In case of
C1 andNch, the systematic uncertainties are the dominant ones over the statistical uncertainties.
On the other hand, at higher order cumulants, statistical errors are the dominant comparing to
the systematic ones. It seems that most of the data points are consistent within statistical or
systematic errors among different trigger IDs.
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350043 at

√
sNN = 200 GeV. Open round symbol and star symbol represent the before and

after efficiency corrected results.
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√
sNN = 200 GeV.
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Figure 5.4: First to sixth-order cumulants as a function of ⟨Npart⟩ in Run10 for each trigger ID
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√
sNN = 200 GeV.
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Fig. (5.5) shows the merged results from first to the sixth-order cumulants as a function of
centralities in Au+Au collision at

√
sNN = 200 GeV. Cumulants are compared with statistical

baseline and model calculation. Red and blue dotted line show the Poisson and NBD baseline
and red band show the UrQMD calculation. The width of the band represent the statistical
uncertainties. The C1 baseline of NBD and Poisson are the same by definition. NBD baselines
are systematically larger than the other results especially from C2 to C4. At C5 and C6 results,
statistical errors on the data points are larger than the difference between NBD and Poisson
baseline. UrQMD calculations are almost consistent within experimental data at higher order
cumulants.
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Figure 5.5: First to sixth-order cumulants as a function of ⟨Npart⟩ in Au+Au collision at√
sNN = 200 GeV.

Next, cumulants at
√
sNN = 54 GeV are shown. Fig. (5.6) shows the before and after

efficiency corrected first to sixth-order cumulants and Nch as a function of centralities in Au+Au
collision at

√
sNN = 54 GeV in Run17, trigger ID = 580021. C1 at

√
sNN = 54 GeV is larger

than that of 200 GeV because of baryon stopping. 62.4 GeV efficiencies are used for efficiency
corrections as a proxy for the 54 GeV. We observed that the Nch at

√
sNN = 54 GeV is

smaller than that of
√
sNN = 200 GeV, which means that charged particle multiplicities in

finite acceptance become larger with collision energies. In addition, the tracking efficiency is
smaller at higher multiplicities, therefore the efficiency at 54 GeV is better than that of 200
GeV.

Fig. (5.7) shows the first to sixth-order cumulants as a function of centralities in Au+Au
collision at

√
sNN = 54 GeV. Cumulants are compared with Poisson and NBD baseline. The

NBD baselines are larger than Poisson baseline from C2 to C4 but the deviations between NBD
and Poisson baseline are smaller than that of

√
sNN = 200 GeV.
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Figure 5.6: First to sixth-order cumulants and Nch as a function of ⟨Npart⟩. Trigger ID =
580021. Open round symbol and star symbol represent the before and after efficiency corrected
results.

0 50 100 150 200 250 300 3500

2

4

6

8

10

12

14

0 50 100 150 200 250 300 3500

100

200

300

400

500

600

0 50 100 150 200 250 300 35010−

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350
0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200 250 300 350
30000−

20000−

10000−

0

10000

20000

30000

0 50 100 150 200 250 300 350

2000−

1000−

0

1000

2000

310×

Data

NBD baseline

Poisson baseline

C 6C 5

C 1 C 2 C 3

C 4

<Npart> <Npart> <Npart>

<Npart><Npart> <Npart>

Au+Au, √sNN = 54 GeV 

Figure 5.7: first to sixth-order cumulants as a function of ⟨Npart⟩ in Au+Au collision at√
sNN = 54 GeV.
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5.1.2 Cumulant ratios

In this subsection, we summarise the results of cumulant ratios. Fig. (5.8) and Fig. (5.9) show
the third to fifth-order cumulant over second-order cumulants as a function of centralities in
Au+Au collision at

√
sNN = 200 GeV and 54 GeV respectively. Poisson and NBD baseline

are also plotted and UrQMD simulation results are shown at
√
sNN = 200 GeV. Data points

of C3/C2 and C4/C2 are always larger than Poisson baseline and C3/C2 are close to NBD
baseline. C5/C2 is consistent within statistical baseline and the difference between Poisson and
NBD baseline is small.
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Figure 5.8: third to fifth-order cumulants over second-order cumulants as a function of ⟨Npart⟩
in Au+Au collision at

√
sNN = 200 GeV.
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Figure 5.9: third to fifth-order cumulants over second-order cumulants as a function of ⟨Npart⟩
in Au+Au collision at

√
sNN = 54 GeV.

Fig.5.10 shows the C6/C2 of net-charge distribution as a function of centralities in Au+Au
collision at 54 GeV (left), 200 GeV (middle) and C6/C2 of net-proton distribution (right) at√
sNN = 200 GeV respectively. The right hand side panel is same as the right hand side panel

of Fig. (1.16). Absolute values of C6/C2 of net-charge and errors are larger than that of net-
proton because width of the net-charge distribution wider than that of net-proton. Most of the
data points of net-charge C6/C2 consistent within statistical baseline in all centrality whereas
net-proton have the negative values at some centralities with larger statistical errors.

Fig. (5.11) shows C6/C2 of net-proton (top) [25] and net-charge (bottom) distribution as a
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Fig. 1. Energy dependence of the cumulants and correlation functions of proton multiplicity distribution in central Au+Au collisions.

3.2. Constraining the QCD equation of state near µB = 0 region
Lattice QCD calculations are exact at µB = 0, where it predicts a crossover from the QGP phase to the

hadron gas phase in the QCD phase diagram [1]. In order to stretch the calculations to finite µB, the current
approach is to use a Taylor expansion about µB = 0. A constraint on the equation of state from Lattice QCD
can be achieved by using the ratio of the sixth-order to the second-order baryon susceptibilities [13]. In
addition, Lattice QCD also predicts the ratio of the sixth-order to second-order cumulant of baryon number
to remain negative at the chiral transition temperature [14]. Combining the data from years 2010 and 2011
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Fig. 2. Centrality dependence of the sixth-order cumulants and the ratio of sixth-order to second-order cumulants of the net-proton
multiplicity distribution in Au+Au collisions at

√
sNN = 200 GeV.

for Au+Au collisions at 200 GeV, we have around 200 M events for 0-10% central collisions (of which
around 160 M events are from year 2010) and around 650 M events for 10-80% central collisions. The
left panel of Fig.2 shows the values of the sixth-order cumulants, while the right panel shows the ratio of
sixth-order to second-order cumulants of the net-proton multiplicity distribution as a function of number of
participants for transverse momenta between 0.4 and 2 GeV/c at midrapidity. The square markers represent
the values measured using 0-5% central events from the data from the year 2010 only. For central collisions,
we find the ratios of the sixth-order to the second-order cumulants of the net-proton multiplicity distributions
to be negative, with large statistical uncertainties. This is consistent with the expectations from Lattice
QCD [2].

The transverse-momentum and rapidity dependence of the ratios of the sixth-order to the second-order
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Figure 5.10: C6/C2 of net-charge distribution as a function of centrality in Au+Au collision at
54 GeV (left), 200 GeV (middle) and C6/C2 of net-proton distribution (right) [24]

function of centrality in Au+Au collision at 54 GeV and 200 GeV. 0-40% centralities are merged
and UrQMD calculations at 200 GeV are also plotted. At net-proton results, C6/C2 have the
negative value at

√
sNN = 200 GeV and positive value at

√
sNN = 54 GeV in 0-40% centrality.

On the other hand, at net-charge results, the small deviation can be seen between
√
sNN = 200

GeV and 54 GeV at 40-50% centrality. However, net-charge C6/C2 at
√
sNN = 200 GeV and

54 GeV are consistent within statistical errors in other centralities.
Next, Sσ and κσ2 of net-charge distributions at

√
sNN = 54 GeV are compared to other

published results from BES-I energies. Fig. (5.12) shows the energy dependence of Sσ and κσ2

of net-charge distribution in 0-5% and 70-80% centralities. The Sσ and κσ2 at
√
sNN = 54 GeV

are consistent with the previously measured
√
sNN = 39 and 62.4 GeV, and it agrees very well

the overall trend of the collision energy dependency.
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FIG. 4: (Color online) Beam-energy dependence of (a) σ2/M ,
(b) Sσ, and (c) κσ2, after all corrections, for most central (0-
5%) and peripheral (70-80%) bins. The error bars are statis-
tical and the caps represent systematic errors. Results from
the Poisson and the NBD baselines are superimposed. The
values of κσ2 for Poisson baseline are always unity.

for Poisson baselines are always unity. For peripheral
collisions the κσ2 values show almost no variation as a
function of beam energy and lie above the Poisson base-
line and below the NBD baseline. For central collisions,
within the statistical and systematic errors of the data,
the κσ2 values at all energies are consistent with each
other, except for

√
sNN = 7.7 GeV. The weighted mean

of κσ2 calculated for central collisions at all energies is
2.4± 1.2. For central collisions, both of the baseline cal-
culations follow the data points except for the one at
the lowest energy. Deviations of the data points with re-
spect to the baseline calculations have been quantified in
terms of the significance of deviation, defined as, (|Data–

Baseline|)/(
√

err2stat + err2sys), where errstat and errsys are

the statistical and systematic errors, respectively. These
deviations remain within 2 in case of Sσ and κσ2 with
respect to the corresponding Poisson and NBD baselines.
This implies that the products of moments do not show
non-monotonic behavior as a function of beam energy.
The fluctuations of conserved quantities can be used

to extract the thermodynamic information on chemical
freeze-out by comparing experimentally measured higher

moments with those from first-principle lattice QCD cal-
culations [23]. Traditionally, by using the integrated
hadron yields, the first moment of the fluctuations, the
chemical freeze-out have been extracted from hadron res-
onance gas (HRG) models [25, 41]. However, higher-
order correlation functions should allow stricter tests on
the thermal equilibrium in heavy-ion collisions. Calcula-
tions of freeze-out parameters based on preliminary ex-
perimental data on moments of net-charge distributions
have been obtained [42, 43]. From the latest lattice [44]
and HRG analyses [45] using the STAR net-charge and
net-proton results for central Au+Au collisions at 7.7 to
200 GeV, the extracted freeze-out temperatures range
from 135 to 151 MeV and µB values range from 326 to 23
MeV. The errors in these calculations increase from 2%
to 10% as a function of decreasing beam energy, which
is mostly due to the statistical uncertainty in the ex-
perimental measurements. More details can be found in
[44, 45]. Note that this is the first time that the exper-
imentally measured higher moments are used to deter-
mine the chemical freeze-out conditions in high-energy
nuclear collisions. The freeze-out temperatures obtained
from the higher moments analysis are lower with respect
to the traditional method [25, 46]. This difference could
indicate a higher sensitivity to freeze-out in the higher
moments, which warrants further investigation.

In summary, the first results of the moments of net-
charge multiplicity distributions for |η| < 0.5 as a func-
tion of centrality for Au+Au collisions at seven collision
energies from

√
sNN = 7.7 to 200 GeV are presented.

These data can be used to explore the nature of the
QCD phase transition and to locate the QCD critical
point. We observe that the σ2/M values increase mono-
tonically with increasing beam energy. Weak centrality
dependence is observed for both Sσ and κσ2 at all ener-
gies. The Sσ values increase with decreasing beam en-
ergy, whereas κσ2 values are uniform except at the lowest
beam energy. Most of the data points show deviations
from Poisson baselines. The NBD baselines are closer
to the data than Poisson, but do not quantitatively re-
produce the data, implying the importance of intra-event
correlations of the multiplicities of positive and negative
particles in the data. Within the present uncertainties,
no non-monotonic behavior has been observed in the
products of moments as a function of collision energy.
The measured moments of net-charge multiplicity distri-
butions provide unique information about the freeze-out
parameters by directly comparing with theoretical model
calculations. Future measurements with high statistics
data will be needed for precise determination of freeze-
out conditions and to make definitive conclusions regard-
ing the critical point.

We thank M. Asakawa, R. Gavai, S. Gupta, F. Karsch,
V. Koch, S. Mukherjee, K. Rajagopal, K. Redlich and M.
A. Stephanov for discussions related to this work. We

70-80%, √sNN=54 GeV
0-5%, √sNN=54 GeV

Net-charge, Au+Au

Figure 5.12: Energy dependence of Sσ and κσ2 of net-charge distribution. Results at
√
sNN = 54

GeV are compared to other published results from BES-I [16].
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5.2 ∆η dependence

Fig. 5.13 shows the ∆η dependence of up to the fourth-order cumulants in Au+Au collisions
at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV. Three centralities, 0-5%, 20-30%

and 40-50% are measured. Cumulants are observed to linearly increase with ∆η because of the
additivity of the cumulants. Cumulants also increase from peripheral to central collisions for the
same reason. Statistical error of C4 in 0-5% centralities are much larger than that in peripheral
collisions. C1 is observed to decrease with collision energies because of the baryon stopping.
On the other hand, C2 is observed to increase with collision energies because multiplicities
are increasing towards to higher collision energies, and the width of the distributions are also
increasing with the multiplicities.

Fig. 5.14 shows the ∆η dependence of various order cumulant ratios and D-measure in
Au+Au collision at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV. Four centralities,

0-5%, 20-30%, 40-50% and 70-80% are measured and color difference represents the different
centralities, and we compare to the Poisson baseline shown with the dotted line. Before and after
charge conservation corrections are represented by open round and star symbol respectively.

C2/C1 decrease with ∆η at all beam energies and peripheral results are larger than central
collision at most of energies. In addition to efficiency correction, charge conservation correction
have been done for D-measure. At D-measure results, similar trends of C2/C1 can be seen.
D-measure also decrease with ∆η at all beam energies and peripheral results are larger than
central collision at most of energies. These trends are similar to ALICE results and higher
results at higher energies are more decreasing with η.

At C3/C2, most of the results are larger than Poisson baseline and increase with ∆η without
most central collision at

√
sNN = 200 GeV.

At C4/C2, most of the results are consistent with Poisson baseline and increase with ∆η
without most central collision.
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Figure 5.13: ∆η dependence of first to fourth-order cumulant in Au+Au collision at
√
sNN =

7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV for 0-5%, 20-30% and 40-50% centralities. Color
difference represents the different centralities.
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Figure 5.14: ∆η dependence of various order cumulant ratios and D-measure in Au+Au collision
at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV for 0-5%, 20-30%, 40-50% and 70-80%

centralities. Color difference represents the different centralities.
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5.3 Volume Fluctuation

In this section, VFC and CBWC results are compared by using toy model and UrQMD approach.
We only show the main results and the other results are shown in appendix.

5.3.1 Toy model approach

Fig. 5.15 shows the second to fourth-order cumulants of net-charge distribution as a function of
⟨NW ⟩ (=⟨Npart⟩) by using toy model for 10% centrality step. For red points, NW is fixed at the
value of the averaged number of participant nucleons (⟨NW ⟩) in each centrality bin, they thus
do not include VF. Kn(N+ − N+) which is sometimes written as Cn represents the nth-order
cumulants of net-charge distributions.

Blue symbols include the fluctuation of the NW in each centrality. Red and blue dotted
line show the Poisson baseline and the expectation line of NW fluctuation which is estimated
from Eq. (4.15) to Eq. (4.18) respectively. NW fixed results (red) are consistent within Poisson
baseline, and NW fluctuation results (blue) are also consistent with the baseline in all cases.
K2(N+−N−) which corresponds to K2(∆n) in Eq. (4.16) is not affected by VF. This is because
small ∆n leads to small VF according to Eq. (4.16). For K3 and K4, NW fluctuation results
are larger than NW fixed results which means that NW fluctuation results are enhanced by
VF. Then, we tried both CBWC and VFC to subtract VF from NW fluctuation results. VFC
results (green) are consistent with NW fixed results (red) which means that VFC works well
in this model. On the other hand, CBWC results are smaller than NW fluctuation results but
larger than NW fixed results. Therefore, in toy model case, CBWC can reduce VF but can not
completely eliminate the VF whereas VFC can remove VF completely.
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Figure 5.15: From second to fourth-order cumulants as a function of mean number of participant
by using Toy model for for 10% centrality. Red, blue and green results show the NW fluctuation,
NW fixed and VFC results. CBWC results are written as the blue star symbol. Red and blue
dotted line is the Poisson baseline and the expectation of NW fluctuation results.

Fig. 5.16 shows the κσ2 of net-charge distribution as a function of ⟨NW ⟩ for 10%, 5% and
2.5% centrality step. In 10% centrality step, CBWC results contain larger VF compared to
the results with 5% and 2.5% step centrality. However, the differences between CBWC and
NW fluctuation results become smaller in 5% centrality step and consistent in 2.5% step. This
results imply that 2.5% centrality step can reduce VF as well as CBWC. However, there remain
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VF in both CBWC and NW fluctuation results in any case. On the other hand, VFC works
well in any case and does not depend on the definition of the centrality divisions.0 50 100 150 200 250 300 350 400
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Figure 5.16: κσ2 as a function of mean number of participant by using toy model for 10% (left),
5% (middle) and 2.5% (right) centrality step. The color and marker differences are same as
Fig.5.15

5.3.2 UrQMD approach

(1) Net-charge

Next, UrQMD simulation results will be shown.
Fig. 5.17 shows the second to fourth-order cumulants of net-charge distribution as a function

of ⟨NW ⟩ by using UrQMD model for 10% centrality step. Red open star symbols ”CBWC-NW ”
mean that CBWC is applied for each NW bin. Standard CBWC is applied for each multiplicity
bin which is represented by blue open star symbol. CBWC-NW results are considered as ”no-
VF” results which correspond to the red round symbol in the toy model case. Blue symbols
contain VF without any corrections, and VFC results are shown in green markers. As discussed
in previous section, K2 is not affected by VF due to the small value of . However, trends at
K3 and K4 are not consistent with toy model case. For example, CBWC results are smaller
than CBWC-NW results, and VFC results are smaller than both of them. VFC results seem
over correction and VFC does not work well. One of the reason could be that IPP is broken in
UrQMD model.

The other reason is the correlation effect. In toy model, particles used for centrality determi-
nation and particles used for the net-charge calculation are produced independently. Therefore,
there are no correlation between multiplicity used for centrality and net-charge. In UrQMD
model and real experiment, net-charge and multiplicity used for centrality determination (Ref-
mult2) are calculated in different kinematic window in order to avoid the correlation. Specifi-
cally, net-charge is measured in |η| < 0.5 and multiplicity used for centrality determination is
measured in 0.5 < |η| < 1. However, there may remain the correlation which make cumulants
smaller. In order to check this effect, we defined four different kinematic η window, |η| < 0.5,
0.5 < |η| < 1, 1.5 < |η| < 2, 2.1 < |η| < 5.1. Fig. 5.18 shows the η distribution in UrQMD model
and color bands represent different η windows. |η| < 0.5 is used to measure net-charge cumu-
lants. Therefore, if centrality is defined in |η| < 0.5, the correlation effect is considered to be
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Figure 5.17: From second to fourth order cumulants as a function of mean number of participant
by using UrQMD model simulation for 10% centrality step. The color and marker differences
are same as Fig. 5.15

very large. 0.5 < |η| < 1 corresponds to current centrality determination region. 2.1 < |η| < 5.1
are outside of STAR TPC acceptance and corresponds to the Event Plane Detector (EPD)
acceptance which will be used for centrality determination from BES II.
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Figure 5.18: Pseudo-rapidity distributions in UrQMDmodel in Au+Au collisions at
√
sNN = 200

GeV.

Fig. 5.19 shows the correlation between multiplicity measured in different η windows and
number of positively charged particles measured in |η| < 0.5. NW is fixed to 100 in all plot.
Therefore, there correlation in Fig. 5.19 correspond to the correlation. If centrality is defined in
|η| < 0.5, strong correlation is observed because of the correlation effect. If centrality is defined
in 0.5 < |η| < 1, correlation seems weaker than that in |η| < 0.5 but the correlation can not
seem to be eliminated. If centrality is defined in EPD region (2.1 < |η| < 5.1), correlation is
smaller than the other definitions.

Fig. 5.20 shows the second to fourth-order cumulants of net-charge distribution as a function
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Figure 5.19: Correlation between Refmult2 and number of positively charged particles which
are measured in different kinematic windows. From left to right, |η| < 0.5, 0.5 < |η| < 1,
1.5 < |η| < 2, 2.1 < |η| < 5.1.

of ⟨NW ⟩ by using UrQMD model for 10% centrality step for different centrality determinations.
The left hand side panels are raw (no correction), middle panels are CBWC and right panels
are VFC results respectively. Color differences are different centrality determination, η regions
are |η| < 0.5, 0.5 < |η| < 1, 1.5 < |η| < 2 and 2.1 < |η| < 5.1. In CBWC and VFC results, third
and fourth order cumulants become larger with forward η region which is used for centrality
determinations. These results imply that cumulants are suppressed by the correlation if η
region which is used to centrality determination is close to the region which is used for cumulants
calculation. Therefore, using Refmult2 for centrality determination in net-charge analysis might
not be enough to eliminate the correlations.
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Figure 5.20: From second to fourth order cumulants as a function of mean number of participant
by using UrQMD model simulation for 10% centrality step for different centrality determination.
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(2) Net-proton

The same studies have been done for net-proton cumulants. Fig. 5.21 and Fig. 5.22 show up
to the sixth-order cumulants and cumulant ratios of net-proton distributions as a function of
⟨NW ⟩ by using UrQMD model for 10% centrality step respectively. The definition of ”CBWC”,
”VFC”, ”CBWC-N” (=CBWC-Nw) and ”CBWC-M” (=CBWC) in Fig. 5.21 and Fig. 5.22 are
the same as the net-charge studies in previous subsection. The same comparison of net-proton
cumulants have already done [53], and the results in Fig. 5.21 and Fig. 5.22 are consistent
with previous studies. At Fig. 5.21, the results of CBWC-N are larger than CBWC-M and
VFC does not work well. This is the same conclusion as the net-charge case. We have to note
that the definition of ”CBWC-N” in Fig. 5.21 and Fig. 5.22. First, centrality is determined by
Refmult3 which is defined as the multiplicity except proton and anti-proton in order to avoid
auto-correlation in |η| < 1. Then, CBWC has been done for each NW bin for each centrality.
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Figure 5.21: Up to the sixth-order net-proton cumulants as a function of mean number of
participant by UrQMD model for 10% centrality step for different centrality determination.
These results are consistent with previous studies [53].
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Figure 5.22: C3/C2 (left), C4/C2 (middle) and C6/C2 (right) of net-proton distributions as a
function of mean number of participant by using UrQMD model simulation for 10% centrality
step for various correction methods.

Next, net-proton cumulants for different centrality definitions are shown as well as net-charge
case in Fig. 5.20, which have not been done in previous studies [53].

Fig. 5.23 shows the second to fourth-order cumulants of net-proton distribution as a function
of ⟨NW ⟩ by using UrQMD model for 10% centrality step for different centrality determinations.
Color differences are different centrality definitions, η ranges are |η| < 1, 1 < |η| < 2, 2 < |η| < 3,
3 < |η| < 4 and 4 < |η| < 5 without proton and anti-proton in order to avoid auto-correlation
effect. Color line show the CBWC-N results for each centrality definition. Black dotted line
shows the CBWC-N results which centrality is determined by dividing NW distribution. In
other words, centralities are determined by final state multiplicity for each η region and then
CBWC-N has been done for color line whereas centrality is determined by NW distribution
itself for dotted line.

The third and fourth-order cumulants of net-proton become larger with forward η region
which is used for centrality determinations as well as net-charge case.

Fig. 5.24 is the same as Fig. 5.23 but only centrality definitions are different. Color differences
are different centrality definitions, η ranges are |η| < 1, 1 < |η| < 2, 2 < |η| < 5. As mentioned
in previous section, η range of EPD is 2.1 < |η| < 5.1. Thus, 2 < |η| < 5 corresponds to the
EPD acceptance, and multiplicities are measured both including proton and excepting proton
cases. As well as Fig. 5.23, the third and fourth-order cumulants of net-proton become larger
with forward η region. In addition, the systematic difference of CBWC results among different
centrality definition is smaller than VFC results, and trends are similar to CBWC-N results.

Fig. 5.25 shows the cumulant ratios from Fig. 5.23, and Fig. 5.26 shows the cumulant ratios
from Fig. 5.24. As well as Fig. 5.23, the third and fourth-order cumulant ratios of net-proton
become larger with forward η region, and CBWC results are always smaller than CBWC-N
results.

In Fig. 5.27, we compared different centrality divisions between 10% and 2.5%. The result
shows that cumulants depend on both centrality definition and bin width.
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Figure 5.23: From second to the fourth-order net-proton cumulants as a function of mean
number of participant by using UrQMD model simulation for 10% centrality step for different
centrality definitions. Centralities are determined at |η| < 1, 1 < |η| < 2, 2 < |η| < 3,
3 < |η| < 4 and 4 < |η| < 5 without proton (anti-proton), which are drawn as different colors.
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Figure 5.24: From second to the fourth-order net-proton cumulants as a function of mean
number of participant by using UrQMD model simulation for 10% centrality step for various
centrality definitions. Centralities are determined at |η| < 1, 1 < |η| < 2, 2 < |η| < 5 without
proton (anti-proton) and 2 < |η| < 5 including proton (anti-proton), which are drawn as
different colors.
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Figure 5.25: C3/C2 (top), C4/C2 (middle) and C6/C2 (bottom) of net-proton distributions as a
function of mean number of participant by using UrQMD model simulation for 10% centrality
step for various centrality determinations. Centralities are determined at |η| < 1, 1 < |η| < 2,
2 < |η| < 3, 3 < |η| < 4 and 4 < |η| < 5 without proton (anti-proton), which are drawn as
different colors.
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Figure 5.26: C3/C2 (top), C4/C2 (middle) and C6/C2 (bottom) of net-proton distributions as a
function of mean number of participant by using UrQMD model simulation for 10% centrality
step for various centrality determinations. Centralities are determined at |η| < 1, 1 < |η| < 2,
2 < |η| < 5 without proton (anti-proton) and 2 < |η| < 5 including proton (anti-proton), which
are drawn as different colors.
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Figure 5.27: From second to the fourth-order net-proton cumulants as a function of mean
number of participant by using UrQMD model simulation for 10% and 2.5% centrality step for
raw (left) and VFC (right).
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Chapter 6

Conclusion

Up to the sixth-order cumulants and cumulant ratios of net-charge distributions in Au+Au
collisions at

√
sNN = 200 and 54 GeV have been measured, and compared to Poisson, NBD

baseline and UrQMD simulation results. These results also have been compared to the previous
net-proton results. At net-proton results, C6/C2 have the negative value at

√
sNN = 200 GeV

and positive value at
√
sNN = 54 GeV in 0-40% centrality. At net-charge results, the small

deviation from the baseline has been observed at
√
sNN = 54 GeV in 40-50% centrality. How-

ever, net-charge C6/C2 at
√
sNN = 200 GeV and most of the centralities at

√
sNN = 54 GeV

are consistent with the baseline within the statistical errors. As it is said in Chapter. 1, nega-
tive C6/C2 is predicted as the signal from the crossover transition from theoretical predictions.
Net-proton results in 0-40% and net-charge results in 40-50% centrality imply that crossover
signal might be stronger at

√
sNN = 200 GeV than 54 GeV. These trends do not conflict with

the theoretical prediction because the baryon density at
√
sNN = 200 GeV is considered to be

smaller than that of 54 GeV, and we can imagine that the signal from crossover at
√
sNN = 200

GeV is stronger than that of 54 GeV. However, the statistical errors are large compared to the
observed deviations between

√
sNN = 200 GeV and 54 GeV. Therefore, it is not obvious that

the signal from crossover has been observed by the measurement of the sixth-order fluctuations
at

√
sNN = 200 GeV and 54 GeV. The BES-II program starts from 2019, and the statistics

at lower energy region will increase than that of BES-I. Therefore, it is important to measure
sixth-order cumulants of both net-proton and net-charge distributions at lower energy regions,
and compare to the results at

√
sNN = 200 GeV and 54 GeV.

Compared to the published net-charge results, analysis and correction methods have been
improved. The efficiency corrections have been done for different pT region and the different
particles species separately whereas average efficiencies were applied to the published results.
The factorial cumulant method makes it possible to calculate cumulants with shorter CPU
time compared to the conventional method. Sσ and κσ2 of the net-charge distributions at√
sNN = 54 GeV are newly measured in addition to the published BES-I results, and the results

at
√
sNN = 54 GeV are in good agreement with the previous BES-I results.

∆η dependence of cumulants, cumulant ratios and D-measure of net-charge distributions
have been measured at BES-I energies,

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV.

D-measure is observed to decrease with expanding ∆η acceptance, and this trend is stronger at
higher beam energies, which do not conflict with the previous results from ALICE experiment in
Pb-Pb collisions at

√
sNN = 2.76 TeV. These results imply that the effect from QGP is getting
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stronger at higher energies, and the trends of ∆η dependence could represent the time evolution
of the phase transition. The C3/C2 and C4/C2 of net-charge distributions have been observed
to increase with ∆η in all BES-I energies except for the most central collision at

√
sNN = 200

GeV. These increasing trends are close to the DMEmodel predictions with the large higher-order
susceptibilities which are the initial condition parameters of the model. At BES-II, new detectors
which are Event Plane Detector (EPD), iTPC and eTOF have been installed which make it
possible to measure cumulants and D-measure with larger ∆η acceptance. It is important to
expand rapidity window by using these detectors in future analysis.

Validity of the volume fluctuation correction on higher-cumulants of both net-charge and
net-proton distributions are studied by using toy model assuming IPP and the UrQMD model
simulation. From these studies, 2.5% centrality division can reduce VF as well as CBWC but
5% or 10% centrality divisions include the effect from VF. In toy model, even though CBWC has
been applied, effect from VF can not be removed completely, and VFC could need to be applied
by definition. However, VFC does not seem to work well in UrQMD model, which would be
because IPP model is expected to be broken in UrQMD. Therefore, we have to consider these
effect if VFC is applied to experimental data. In addition, there is a physics correlation between
multiplicity for centrality definition and the charged particles used for the cumulant analysis.
This correlation may suppress the cumulants like an auto-correlation effect.

UrQMD simulation tells that using Refmult2 (multiplicity in 0.5 < |η| < 1) and Refmult3
(multiplicity in 0 < |η| < 1 excluding proton and anti-proton) would not be enough to eliminate
the multiplicity correlations. Thus, when we define centrality at real experiment, we would need
to treat this effect which is not considered in the toy model simulation. At STAR experiment,
using EPD for an external centrality measurements could be one of the solution to reduce this
effect compared with the conventional centrality definition using TPC.
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Appendix A

Light-Cone variables

As mentioned at previous section, in relativistic heavy ion collision, it is convenient to use
kinetic variables which take simple form or unchanged under Lorentz transformations (LT),
such as proper time τ . In this section some light-cone variables, such as rapidity, are introduced
[3].

A.1 Transverse momentum

In relativistic theory, motion of the particles are characterized by 4-momentum, pµ = (E,p).
At experiment, particles are ”light like” along the beam direction, z. Therefore, momentum is
changed under LT. However, transverse momentum which is defined as

pT = (px, py), (A.1)

is unchanged under LT. Thus, transverse momentum is usually used as a observables. In
addition, transverse mass m2

T = m2 + p2T is also used where m is the mass of the particle.

A.2 Rapidity

According to the composition low for velocities of classical mechanics, sum of the velocities of
the two objects can be expressed as

v3 = v1 + v2, (A.2)

where v1, v2 are the velocities of two objects. However, if the speed of the objects are close
to the light speed like heavy ion collision, Eq.(A.2) is not true and expressed as

v3 =
v1 + v2
1 + v1v2

. (A.3)

On the other hand, according to the addition theorem,

tanh(x+ y) =

(
tanhx+ tanhy

1 + tanh(x)tanh(y)

)
(A.4)

is established. Therefore, if we define velocity v as
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v = tanh(y), (A.5)

Eq.(A.3) can be written by
y3 = y1 + y2. (A.6)

This formula is same as Eq.(A.2) in spite of relativistic case. From relativistic theory, v
c = pz

E .
Therefore, y can be expressed as

y = tanh−1
(pz
E

)
(A.7)

=
1

2
ln

(
E + pz
E − pz

)
. (A.8)

y is called ”rapidity”. In addition, from Eq.(A.7), E2 = m2 + p2 and m2
T = E2 − p2z, following

relations are established

E = mT coshy , (A.9)

pz = mT sinhy . (A.10)

A.3 Pseudo-rapidity

If p is much larger than m, E close to p, E ∼ p. Then, rapidity can be expressed as

y ∼ tanh−1

(
pz
p

)
= tanh−1(cos(θ)). (A.11)

Therefore, rapidity only depend on angle θ and called pseudo-rapidity (η). η takes simple form
under LT. Hence, η can be used to represent the angle from the beam direction instead of θ.

A.4 Center of mass energy

Next, we consider the energy when 2 particles collide at the point. 4-momentum is written as
pµ = (E,p). Thus, energy E is changed under LT. Then, s is introduced by using 4-momentum
of 2 particles p1、p2. s is defined as

s = (p1 + p2)
2. (A.12)

s is Lorentz invariant and correspond to the center of mass energy. In case of heavy ion
collision, center of mass energy per nucleon is expressed as

√
sNN = .

99



Appendix B

QA plots and analysis details

B.1 C6 analysis

Figure B.1 B.2 show the run by run mean value of ⟨pT ⟩, ⟨η⟩, ⟨ϕ⟩, ⟨dca⟩ and ⟨Refmult⟩ in Run10
at

√
sNN = 200 and Run17 at

√
sNN = 54 GeV respectively.
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Figure B.1: Run by run QA for Run10 at
√
sNN = 200 GeV

The same procedure had been done and select good run for the other energies as well.
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Figure B.2: Run by run QA for Run17 at
√
sNN = 54 GeV

Figure B.3: fig:(a)z-vertex measured by TPC (b)vertex in xy-plane measured by TPC
(c)Difference between z-vertex measured by TPC and VPD (d)Correlation between Refmult
and TOF matched track at

√
sNN = 54 GeV in Run17, Trigger ID = 580021
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Figure B.4: fig:(a)Pseudo-rapidity distribution (b)Distance of Closest Approach (DCA) distri-
bution (c)Number of hit points in TPC track used for reconstruction (d)Number of hit points
in TPC track used for calculating energy loss (e)Distribution of track quality at

√
sNN = 54

GeV in Run17, Trigger ID = 580021
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Fig.B.6 shows the Refmult2 dependence of TPC and TPC+TOF efficiencies for each particles
species in Run11. Solid line represent the TPC tracking efficiency and dotted line represent the
TPC+TOF efficiency which is calculated by TPC efficiency times TOF efficiency.
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Figure B.5: Refmult2 dependence of TPC and TPC+TOF efficiencies in Run11 for each Trigger
ID.
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Figure B.6: Refmult2 dependence of TPC and TPC+TOF efficiencies in Run17
√
sNN = 54

GeV.

B.2 ∆η analysis

Fig.B.19 are tracking efficiencies for each energies which are same as published results [16]. In
published results, average values between positively and negatively charged particles are applied.
In addition, 62.4 GeV efficiencies are applied to 200 GeV data as a proxy of 200 GeV tracking
efficiencies. In this thesis, efficiency corrections were done separately between positively and
negatively charged particles and 200 GeV efficiencies are applied to 200 GeV data.
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Figure B.7: ϕ − η distributions after event selections at
√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39,

62.4 and 200 GeV.
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Figure B.8: Z-vertex distributions after event selections at
√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39,

62.4 and 200 GeV.
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Figure B.9: Vr distributions after event selections at
√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4

and 200 GeV.

Figure B.10: Pile-up events rejection at
√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV.
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Figure B.11: η distributions at
√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV.
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Figure B.12: pT distributions at
√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV.
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Figure B.13: DCA distributions at
√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV.
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Figure B.14: Nhitspoints distributions at
√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200

GeV.
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Figure B.15: Nhitsdedx distributions at
√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV.
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Figure B.16: Track quality distributions at
√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200

GeV.
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Figure B.17: Distributions of the difference between Z-vertex measured by TPC and VPD at√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV.
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Figure 12: Centrality selection window and analysis window in h vs pT distribution

for AuAu 39 GeV
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and MC distribution of Refmult2.

p
s

NN
(GeV) 0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

200 453 383 268 181 117 71 40 20 9

62.4 334 279 194 131 84 51 29 15 7

39 307 257 179 121 78 47 27 14 7

27 284 237 164 111 71 43 25 13 6

19.6 258 215 149 100 65 40 22 12 5

11.5 206 172 118 80 52 32 18 9 4

7.7 165 137 95 64 41 25 14 7 3

Table 1: Refmult2 centrality cuts. For example, 5-10% at 200 GeV centrality cuts,

383<= Refmult2 < 453 is used.

9

Figure B.18: Refmult2 centrality cuts in BES energies. These values are same as published
results [16].
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Table 2: Efficiencies for positive and negative particle for different centralities. The

average efficiency (e) is also listed below for different energies and centralities.

p
s

NN
(GeV) 0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

Positive charged particles ( e+)

62.4 0.62 0.63 0.64 0.65 0.66 0.67 0.69 0.68 0.70

39 0.62 0.64 0.65 0.66 0.67 0.67 0.68 0.70 0.71

27 0.63 0.65 0.65 0.66 0.67 0.68 0.68 0.69 0.70

19.6 0.63 0.66 0.67 0.67 0.68 0.69 0.70 0.71 0.71

11.5 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72

7.7 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.72

Negative charged particles ( e�)

62.4 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72

39 0.64 0.65 0.66 0.67 0.68 0.69 0.69 0.70 0.72

27 0.65 0.66 0.66 0.67 0.67 0.68 0.69 0.69 0.71

19.6 0.66 0.67 0.67 0.68 0.69 0.70 0.71 0.72 0.72

11.5 0.67 0.67 0.68 0.69 0.70 0.71 0.72 0.72 0.73

7.7 0.66 0.67 0.68 0.69 0.71 0.70 0.72 0.72 0.73

Average ( e = ( e+ + e�)/2)

62.4 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.69 0.71

39 0.63 0.64 0.65 0.66 0.66 0.68 0.68 0.70 0.71

27 0.64 0.65 0.65 0.67 0.67 0.68 0.68 0.69 0.70

19.6 0.65 0.66 0.67 0.68 0.69 0.70 0.70 0.71 0.72

11.5 0.66 0.66 0.67 0.67 0.68 0.69 0.70 0.71 0.72

7.7 0.66 0.67 0.67 0.68 0.69 0.70 0.71 0.72 0.73

Figure 35: Parameters of Pol3 are listed for all energies.

27

Figure B.19: Tracking efficiencies at
√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39 and 62.4 GeV. These

values are same as published results [16]
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Appendix C

Z-vertex and luminosity correction
for Refmult2

Centrality is defined by number of charged track which are measured in 0.5 | η |< 1 (Refmult2).
Refmult2 depend on luminosity and Z-vertex. Thus, these effect should be corrected. The top
panels of Fig.C.1, Fig.C.2 and Fig.C.3 show the mean Refmult2 as a function of ZDC coincidence
rate which corresponds to the luminosity for each minimum bias Trigger ID in Run11, Run10
at

√
sNN = 200 GeV and Run17 at

√
sNN = 54 GeV respectively. Mean Refmult2 is observed

to decrease with luminosity in all Trigger ID. Therefore, polynomial fitting were done for each
Trigger ID and corrected to be flat. Red lines show the pol1 fitting and corrected results
are shown as blue line. Bottom panels are before and after corrected Refmult2 distributions.
Refmult2 distributions are changed by the correction at

√
sNN = 200 GeV. However, before and

after Refmult2 distributions are almost the same at
√
sNN = 54 GeV. Therefore, this luminosity

correction is effective at
√
sNN = 200 GeV but not effective at lower energies.
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Figure C.1: Luminosity correction for Refmult2 in Run11 at
√
sNN = 200 GeV

Fig.C.4 shows the Refmult2 distributions for each Z-vertex from −30 < Vz < 30 for 1cm
step in Run11 at

√
sNN = 200 GeV, Trigger ID = 350043. Fitting was done by the following

function around central collision.
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Figure C.2: Luminosity correction for Refmult2 in Run10 at
√
sNN = 200 GeV
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Figure C.3: Luminosity correction for Refmult2 in Run17 at
√
sNN = 54 GeV
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f(x) = a×Erf(−b(x− c)) + a, (C.1)

Erf(x) =
2√
π

∫ ∞

0
e−t2dt, (C.2)

where a, b and c are fitting parameters and c is called ”Max Refmult2”. Erf(x) is called error
function.

Fig.C.5 and Fig.C.6 show the Max Refmult2 as a function of Z-vertex from −30 < Vz < 30cm
in Run11 at

√
sNN = 200 GeV for each Trigger ID. 2nd polynomial fitting was done for each

Trigger ID and corrected to be flat. In addition, mean values of Refmult2 is scaled to Trigger
ID = 350043 at

√
sNN = 200 GeV.

114



0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-3
0<
Vz
<-
29

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-2
0<
Vz
<-
19

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-1
0<
Vz
<-
9

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

0<
Vz
<1

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

10
<V
z<
11

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

20
<V
z<
21

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-2
9<
Vz
<-
28

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-1
9<
Vz
<-
18

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-9
<V
z<
-8

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

1<
Vz
<2

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

11
<V
z<
12

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

21
<V
z<
22

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-2
8<
Vz
<-
27

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-1
8<
Vz
<-
17

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-8
<V
z<
-7

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

2<
Vz
<3

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

12
<V
z<
13

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

22
<V
z<
23

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-2
7<
Vz
<-
26

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-1
7<
Vz
<-
16

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-7
<V
z<
-6

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

3<
Vz
<4

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

13
<V
z<
14

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

23
<V
z<
24

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-2
6<
Vz
<-
25

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-1
6<
Vz
<-
15

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-6
<V
z<
-5

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

4<
Vz
<5

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

14
<V
z<
15

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

24
<V
z<
25

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-2
5<
Vz
<-
24

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-1
5<
Vz
<-
14

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-5
<V
z<
-4

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

5<
Vz
<6

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

15
<V
z<
16

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

25
<V
z<
26

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-2
4<
Vz
<-
23

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-1
4<
Vz
<-
13

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-4
<V
z<
-3

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

6<
Vz
<7

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

16
<V
z<
17

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

26
<V
z<
27

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-2
3<
Vz
<-
22

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-1
3<
Vz
<-
12

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-3
<V
z<
-2

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

7<
Vz
<8

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

17
<V
z<
18

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

27
<V
z<
28

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-2
2<
Vz
<-
21

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-1
2<
Vz
<-
11

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-2
<V
z<
-1

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

8<
Vz
<9

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

18
<V
z<
19

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

28
<V
z<
29

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-2
1<
Vz
<-
20

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-1
1<
Vz
<-
10

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

-1
<V
z<
0

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

9<
Vz
<1
0

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

19
<V
z<
20

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

1

102
10

3
10

4
10

29
<V
z<
30

Re
fm
ul
t2

Counts
Tr
ig
ge
r I
D 
= 
35
00
43

Figure C.4: Refmult2 distribution for each Z-vertex from -30 to 30cm and fitting to extract
”max Refmult2” in Run11 at

√
sNN = 200 GeV. Trigger ID = 350043

115



30− 20− 10− 0 10 20 30
480

490

500

510

520

530

540

550

560

570

Vz Uncorr

Vz_Corr

30− 20− 10− 0 10 20 30
480

490

500

510

520

530

540

550

560

570

30− 20− 10− 0 10 20 30
480

490

500

510

520

530

540

550

560

570

30− 20− 10− 0 10 20 30
480

490

500

510

520

530

540

550

560

570

30− 20− 10− 0 10 20 30
480

490

500

510

520

530

540

550

560

570

350043            350003             350013            350023              350033

Vz

M
ax
 R
ef
m
ul
t2

Figure C.5: Z-vertex correction for Refmult2 in Run11 at
√
sNN = 200 GeV
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Figure C.6: Z-vertex correction for Refmult2 in Run10 at
√
sNN = 200 GeV
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Figure C.7: Z-vertex correction for Refmult2 in Run17 at
√
sNN = 54 GeV
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Appendix D

Other VFC results

In this chapter, we show the various VFC results which are not shown in Chapter.5.

D.1 Net-proton toy model results

In this section, we show the toy model results of net-proton distributions and correlation plot.
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Figure D.1: (a) Correlation between multiplicity and NW by Glauber simulation and two com-
ponent model. (b) NW distributions for each centrality. (c)(d)(e) Second to the fourth-order
NW cumulants as a function of ⟨NW ⟩. Number of events are 100 Million.

117



0 50 100 150 200 250 300 3500

1

2

3

4

5

6
Nw fixed
Raw
Raw Exp
VFC
Poisson
CBWC

Nw fixed
Raw
Raw Exp
VFC
Poisson
CBWC

Nw fixed
Raw
Raw Exp
VFC
Poisson
CBWC

Nw fixed
Raw
Raw Exp
VFC
Poisson
CBWC

0 50 100 150 200 250 300 3500

5

10

15

20

25

30

0 50 100 150 200 250 300 3500

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 3500

10

20

30

40

50

60

0 50 100 150 200 250 300 35030−

20−

10−

0
10
20
30
40
50
60
70

0 50 100 150 200 250 300 3501000−

800−

600−

400−

200−

0
200
400
600
800

1000

<Nw>

C 1
Toy model 
 10% bin

C 2 C 3

<Nw> <Nw>

Net-proton 
√sNN = 200 GeV 

Au+Au 
|y| < 0.5

<Nw> <Nw> <Nw>

C 4 C 5 C 6

Figure D.2: From first to sixth-order net-proton cumulants as a function of mean number
of participant by using toy model simulation for 10% centrality step for different centrality
determination.
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Figure D.3: From first to sixth-order net-proton cumulants as a function of mean number
of participant by using toy model simulation for 5% centrality step for different centrality
determination.
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Figure D.4: From first to sixth-order net-proton cumulants as a function of mean number
of participant by using toy model simulation for 5% centrality step for different centrality
determination.
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Figure D.5: C3/C2 (left), C4/C2 (middle) and C6/C2 (right) of net-proton distributions as a
function of mean number of participant by using toy model simulation for 10% centrality step
for various correction methods.
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Figure D.6: C3/C2 (left), C4/C2 (middle) and C6/C2 (right) of net-proton distributions as a
function of mean number of participant by using toy model simulation for 10% centrality step
for various correction methods.
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Figure D.7: C3/C2 (left), C4/C2 (middle) and C6/C2 (right) of net-proton distributions as a
function of mean number of participant by using toy model simulation for 10% centrality step
for various correction methods.
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D.2 Net-charge toy model results
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Figure D.8: From 2nd to 4th order cumulants of N+ distribution as a function of mean number
of participant by using Toy model for 10% centrality step.
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Figure D.9: From 2nd to 4th order cumulants of N+ (top) and net-charge (bottom) distribution
as a function of mean number of participant by using Toy model for 5% centrality step.
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Figure D.10: From 2nd to 4th order cumulants of N+ (top) and net-charge (bottom) distribution
as a function of mean number of participant by using Toy model for 2.5% centrality step.
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Figure D.11: Sσ and κσ2 of N+ (top) and net-charge (bottom) distribution as a function of
mean number of participant by using Toy model for 10% centrality step.
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Figure D.12: Sσ and κσ2 of N+ (top) and net-charge (bottom) distribution as a function of
mean number of participant by using Toy model for 5% centrality step.
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Figure D.13: Sσ and κσ2 of N+ (top) and net-charge (bottom) distribution as a function of
mean number of participant by using Toy model for 2.5% centrality step.
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