Measurements of Higher-Order Cumulants of Net-Proton Distributions in 200 GeV p+p Collisions at RHIC-STAR

Risa Nishitani High Energy Nuclear Physics Group

2022.02.21 博士論文公開発表会

Outline

Introduction

- QCD phase diagram
- Higher-order cumulants
- STAR Au+Au results
- Physics motivation in p+p collisions

Results

- Acceptance dependence
- Multiplicity dependencies of cumulants

Discussion

- Baryon number conservation effect
- Comparison between p+p and Au+Au

Data analysis

- Particle identification
- Efficiency correction
- Statistical uncertainties
- Effects of pileup
- Pileup model
- Systematic uncertainties

Summary

Oral Presentations

- STAR Collaboration meeting (March 4, 2021)
- JPS (March 14, 2021)
- CPOD2021 the International conference on Critical Point and Onset of Deconfinement (March 15-19, 2021)
- TCHoU workshops (March 30, 2021)
- RHIC & AGS Annual Users' Meeting 2021 (June 8-11, 2021)

Activities

- STAR Shift (2019, 2020)
- Workshop in Wayne State University (2020)
- Physics Working Group Meeting at the STAR experiment
- v1 (flow) meeting
- Fluctuation Focus Meeting

Introduction

- QCD phase diagram
- Higher-order fluctuations
- C_4/C_2 for critical point search
- C_5/C_1 and C_6/C_2 for crossover search
- Phase transition in p+p?
- Fluctuations in p+p collisions

QCD phase diagram

 Hadronic gas →QGP
 Crossover @ µ B=0 Y. Aoki, et al., Nature 443, 675 (2006)
 Critical point ?
 ↓
 Experimental search
 by Beam Energy Scan (BES) at RHIC-STAR

STAR Collaboration, Nuclear Physics A 982, 899-902 (2019) STAR public note, https://drupal.star.bnl.gov/STAR/starnotes/public/sn0493

Goal : Study the phase diagram of QCD matter

Risa Nishitani 2022.02.21

Fluctuation = Cumulant, Moment

Fluctuations of conserved quantities

• Conserved quantity is sensitive to correlation length ξ

$$\begin{split} C_2 = &< (\delta N)^2 >_c \approx \xi^2 & C_5 = < (\delta N)^5 >_c \approx \xi^{9.5} \\ C_3 = &< (\delta N)^3 >_c \approx \xi^{4.5} & C_6 = < (\delta N)^6 >_c \approx \xi^{12} \\ C_4 = &< (\delta N)^4 >_c \approx \xi^7 & \xi \text{ diverges near the C.P.} \end{split}$$

- M. A. Stephanov, Phys, Rev, Lett. 102, 032301 (2009)M. Asakawa, et.al., Phys, Rev, Lett. 103, 262301 (2009)M. A. Stephanov, Phys, Rev, Lett. 107, 052301 (2011)
- Volume terms are cancelled by taking ratio to connect to baryon number susceptibility

$$S\sigma = rac{C_3}{C_2} = rac{\chi_3}{\chi_2}$$
, $\kappa\sigma^2 = rac{C_4}{C_2} = rac{\chi_4}{\chi_2}$ $\chi = rac{1}{VT^3} \times C_n^B$

- Higher-order cumulants and their ratios of <u>conserved charges</u> are sensitive to phase structure ► <u>ΔN_q = N_q - N_q
 </u>
- Statistical baseline : "Skellam" = Poisson Poisson'

$$C_4/C_2 = C_5/C_1 = C_6/C_2 = 1$$

Difference between two independent Possion distributions

Net-proton distributions

Energy dependence of net-proton distributions

STAR Collaboration, Phys. Rev. Lett. 126, 092301 (2021) STAR Collaboration, arXiv, 2101.12413 (2021)

Net-baryon cumulants can be reconstructed from net-proton cumulants

Asakawa, Kitazawa Phys. Rev. C 86 (2012) 024904

Fourth-order fluctuations for critical point search

Crossover

Sixth-order fluctuations for crossover search

M. S. Abdallah, et.al., Phys. Rev. Lett. 127, 262301 (2021)

A. Bazavov et al, Phys. Rev. D 95, 054504 (2017)

- From peripheral to central collisions, the values of C_6/C_2 change from positive to negative at 200 GeV
- Lattice QCD calculations at $\mu_B = 0$ show negative C₆/C₂

QGP in p+p at high multiplicity?

Previous study

STAR Collaboration, Phys. Rev. Lett. 112, 32302 (2014)

Goal of this study:

This study

- Statistics is 70 times larger than previous results
- Multiplicity / acceptance
- dependence would be available with high statistics dataset

Average Number of Participant Nucleons (N_{part})

Precise determination the physics baseline

+ Check the possibility of phase transition in high multiplicity events in p+p collisions through the measurements of higher-order cumulants

Data Analysis

- Particle identification
- Efficiency correction
- Statistical uncertainties
- Effects of pileup
- Systematic uncertainties

STAR detector

- Time Projection Chamber (TPC) : Tracking, PID, Vertex
- Time Of Flight (TOF) : Extend proton PID up to pT = 2 GeV/c
 - Start timing from Vertex Position Detector (VPD)
- Electro-Magnetic Calorimeter (EMC)
- Zero Degree Calorimeter (ZDC)

Event & Track cuts

Event

- Collision vertex is required
 - along the beam line : $|V_Z^{TPC}| < 30$ cm
 - in transverse direction $: |V_r^{TPC}| < 2cm$
- Collision pileups are suppressed by : |VzVPD VzTPC|<3cm

Track cut

- Distance of Closest Approach : DCA < 1cm
- Number of TPC hit : nHitsFit > 20
 - For long distance of tracks : nHitsFit/nHitsMax <0.52
- Rapidity : |y|<0.5
- Transverse momentum : $0.4 < p_T (GeV/c) < 2.0$

Particle identification

Protons and antiprotons can be identified by TPC and/or TOF depending on $p_{\rm T}$ region

- Proton identification in $dE/dx : |n\sigma_P| \le 2$
- p+p Collisioins 18000 √s = 200 GeV -7000 10 16000 6000 dE/dx (keV/cm) 14000 D p p 5000 12000 <u>Ö</u>0.5 K+ 10000 4000 p+p Collisioins 8000 5 m^2 3000 √s = 200 GeV 6000 K- \mathbf{K}^+ 2000 4000 1000 71 88 π^+ 2000 π 0 -2 2 -1 0 1 -2 2 0 -1 p/q (GeV/c) p/q (GeV/c)
- Mass square : $0.6 < m^2 (GeV/c)^2 < 1.2$

Precise measurements in p+p 200 GeV

- Charged particle multiplicity is defined in $|\eta| < 1.0$ excluding (anti)protons.
- Event-by-event net-proton distributions are measured at mid-rapidity.

Efficiency correction

• Cumulants are corrected for detector efficiencies by assuming they follow the binomial distribution.

$$B_{p,N}(n) = \frac{N!}{n!(N-n)!}p^n(1-p)^n$$

 $q_{(r,s)} = \sum_{j=1}^{n_{\text{tot}}} \frac{a_j^r}{\varepsilon_j^s}$ a: charge, ε : efficiency

M. Kitazawa, PRC.86.024904 (2012),
M. Kitazawa and M. Asakawa, PRC.86.024904 (2012)
A. Bzdak and V. Koch, PRC.86.044904 (2012),
PRC.91.027901 (2015),
X. Luo, PRC.91.034907 (2015)
T. Nonaka et al, PRC.94.034909 (2016),
A. Bzdak, R. Holzmann, V. Koch, PRC.94.064907 (2016)
X. Luo, T. Nonaka, Phys. Rev. C99, 044917 (2019)
T. Nonaka, M. Kitazawa, S. Esumi,
PRC.95.064912 (2017)

$$C_{1} = \langle Q \rangle_{c} = \langle q_{(1,1)} \rangle_{c},$$

$$C_{2} = \langle Q^{2} \rangle_{c} = \langle q_{(1,1)}^{2} \rangle_{c} + \langle q_{(2,1)} \rangle_{c} - \langle q_{(2,2)} \rangle_{c},$$

$$C_{3} = \langle Q^{3} \rangle_{c} = \langle q_{(1,1)}^{3} \rangle_{c} + 3 \langle q_{(1,1)} q_{(2,1)} \rangle_{c} - 3 \langle q_{(1,1)} q_{(2,2)} \rangle_{c} + \langle q_{(3,1)} \rangle_{c} - 3 \langle q_{(3,2)} \rangle_{c} + 2 \langle q_{(3,3)} \rangle_{c},$$

$$C_{4} = \langle Q^{4} \rangle_{c} = \langle q_{(1,1)}^{4} \rangle_{c} + 6 \langle q_{(1,1)}^{2} q_{(2,1)} \rangle_{c} - 6 \langle q_{(1,1)}^{2} q_{(2,2)} \rangle_{c} + 4 \langle q_{(1,1)} q_{(3,1)} \rangle_{c} + 3 \langle q_{(2,1)}^{2} \rangle_{c} + 3 \langle q_{(2,2)}^{2} \rangle_{c} - 12 \langle q_{(1,1)} q_{(3,2)} \rangle_{c} + 8 \langle q_{(1,1)} q_{(3,3)} \rangle_{c} - 6 \langle q_{(2,1)} q_{(2,2)} \rangle_{c} + \langle q_{(4,1)} \rangle_{c} - 7 \langle q_{(4,2)} \rangle_{c} + 12 \langle q_{(4,3)} \rangle_{c} - 6 \langle q_{(4,4)} \rangle_{c},$$

• Efficiency variations on acceptance and multiplicity are taken into account.

•

Statistical uncertainties

General method which can be applied to complicated procedures in cumulant calculations are needed

Pileup events in p+p collisions

- Effects of pileups
- Effects on TOF matching efficiency
- Effects on Multiplicity distributions
- Necessary number of bins in net-proton distribution

Effects of pileups

Two effects are contained at high luminosity events:

- (1) Increasing of pileup backgrounds.
- (2) Decreasing of efficiency due to higher track density

Effects of pileups

Effects on TOF matching efficiency

TOF matching efficiency $|\mathbf{n}\sigma_{\mathbf{P}}| < 2 \cap \mathbf{TOF}$ -hit $\cap \mathbf{EMC}$ -hit $|\mathbf{n}\sigma_{\mathbf{P}}| < 2 \cap \mathbf{TOF}$ -hit **e**'= = 3 $|n\sigma_P| < 2$ $|\mathbf{n}\sigma_{\mathrm{P}}| < 2 \cap \mathbf{EMC-hit}$ = **TPC** tracking protons **TOF Matching Efficiency** TOF Matching Efficiency +EMC 0.5 TOF with EMC $2 \leq \text{RefMult} < 30$ $2 \leq \text{RefMult} < 30$ High luminosity High luminosity Middle luminosity Middle luminosity Proton Proton Low luminosity Low luminosity 0 0 0.5 0.5 1.5 2 1.5 2 p_{_} (GeV/c) p_ (GeV/c)

- TOF match efficiency change ~10% depending on luminosity
- Increasing of backgrounds with luminosity in TPC detected tracks
- Deviations between different luminosity results are clearly reduced even in the low p⁺
- TOF with EMC are required for entire p_{T}

More systematic grouping of luminosity

Risa Nishitani 2022.02.21

Effects on Multiplicity distributions

Risa Nishitani 2022.02.21

Effects on Multiplicity distributions

- Correction method is determined by better agreement of results from different luminosity groups
- < χ²> of C₂ in mean corrected multiplicity is smaller than in shape correction
- Same results are shown for most order of cumulants

Mean corrections are employed

Necessary number of bins in net-proton distribution

Statistical errors for each luminosity groups at high multiplicity bins cannot be properly estimated due to small number of bins (<6) in net-proton distributions

Luminosity categorizations so that net-proton distributions have enough number of bins

Summary of systematic study

	$\sigma_{sys} = Y_{def} \sqrt{\sum_j R_j^2} \ imes 100$
C_1	4.16~%
C_2	3.63~%
C_3	3.91~%
C_4	3.12~%
C_5	8.18 %
C_6	6.99~%

C_2/C_1	1.35~%
C_{3}/C_{2}	1.58~%
C_{4}/C_{2}	0.65~%
C_{5}/C_{1}	7.97 %
C_{6}/C_{2}	8.75 %

Large uncertainties in C_5 , C_6/C_2

Contribution (R_j) for each variables

$R_j = $	$\left \frac{1}{n}\sum_{i}\right $	$\left[\frac{Y_{i,j}-Y_{def}}{Y_{def}}\right]$	$ ^{2} \times 100$
----------	------------------------------------	--	--------------------

	$ n\sigma_p $	DCA[cm]	nHitsFit	m^2	Efficiency	ZDC coincidence ra	ate(Hz)
C_1	0.04~%	2.47~%	0.23~%	0.07~%	2.79~%	1.81 %	
C_2	0.02~%	1.23~%	0.31~%	0.04~%	2.46~%	2.33~%	1
C_3	0.18~%	2.57~%	0.23~%	0.07~%	2.38~%	1.70~%	
C_4	0.07~%	1.13~%	0.20~%	0.06~%	2.00~%	2.10~%	
C_5	2.98~%	4.63~%	0.87~%	0.57~%	0.56~%	5.92~%	DCA is dominant
C_6	1.09~%	1.21~%	0.91~%	0.37~%	2.66~%	6.17~%	
C_{2}/C_{1}	0.06~%	1.22~%	0.23~%	0.09 %	0.33~%	0.37~%	for most ratios
C_{3}/C_{2}	0.14~%	1.37~%	0.36~%	0.09~%	0.12~%	0.66~%	
C_{4}/C_{2}	0.04~%	0.12~%	0.13~%	0.02~%	0.53~%	0.31~%	
C_{5}/C_{1}	2.34~%	1.53~%	1.10~%	0.60~%	3.48~%	6.48~%	
C_{6}/C_{2}	0.98~%	1.49~%	1.47~%	0.28~%	4.56~%	7.10~%	

Results & Discussion

- Acceptance dependence
- Multiplicity dependence
 - Mean corrected multiplicity dependence
 - Luminosity independent variable dependence

```
Discussion①:
Study of baryon number conservation effect
Discussion②:
Comparison between p+p and Au+Au
```

Acceptance dependence of net-proton cumulant ratios

- Deviations from Skellam baseline become large with increase
 - of Δy acceptance except for C_3/C_2
- PYTHIA calculations do not reproduce the observed deviations

• The baseline is suppressed by baryon number conservation

P. Braun-Munzinger et. al., Nucl. Phys. A 961 (2016)

 Δy dependence

Acceptance dependence of net-proton cumulant ratios

- Deviations from Skellam baseline become large with increase of pT acceptance except for C₃/C₂
- PYTHIA calculations do not reproduce the observed deviations

• The baseline is suppressed by baryon number conservation

P. Braun-Munzinger et. al., Nucl. Phys. A 961 (2016)

 Δp_T dependence

Multiplicity dependence of net-proton cumulants

- Cumulants increase with increasing multiplicity
- Deviations from Skellam become larger for higher-order Skellam = (Poisson)proton (Poisson)antiproto
- PYTHIA calculations do not reproduce the observed values except for C_5

• The baseline is suppressed by baryon number conservation P. Braun-Munzinger et. al., Nucl. Phys. A 961 (2016)

Multiplicity dependence of net-proton cumulant ratios

- C_3/C_2 is consistent with the Skellam expectations
- Deviations from Skellam become larger for higher-order
- PYTHIA calculations do not reproduce the observed multiplicity dependence

• The baseline is suppressed by baryon number conservation P. Braun-Munzinger et. al., Nucl. Phys. A 961 (2016)

Mean corrected multiplicity

• ZDC coincidence rate dependence of TOF matced multiplicity become flat

TOF matched average number of (anti)protons

Average number of (anti)proton becomes flat as a function of ZDC coincidence rate by requiring the TOF matching

-> TOF matching can reduce background tracks from pileup events

C2 as a function of multiplicity in 2 way

-> TOF matching multiplicity are employed

TOF matched Multiplicity dependence of net-proton cumulants

- Cumulants increase with increasing multiplicity
- Deviations from Skellam^{*} become larger for higher-order

• The baseline is suppressed by baryon number conservation

TOF matched multiplicity dependence of net-proton cumulant ratios

- Decreasing trends are shown in C_4/C_2 , C_5/C_1 , C_6/C_2 for data & PYTHIA 8
- Deviations from Skellam become larger for higher-order

• C_4/C_2 , C_5/C_1 , and C_6/C_2 decrease with increasing the multiplicity

• Multiplicity dependence of PYTHIA 8 qualitatively reproduce observed C4/C2, C5/C1, C6/C2

$\textbf{Discussion} \ \textbf{1}$

Baryon number conservation effect

Rapidity acceptance dependence of cumulants

Acceptance dependence of cumulants are important to understand the time revolution of critical fluctuations near the QCD critical point in heavy ion collisions.

- A possibility of probing the early time fluctuations are obtained through the rapidity dependence of the secondorder cumulant
- Their non-monotonic behaviors as a function of rapidity show experimental signals for the existence of the critical enhancement around the QCD critical point

Baryon number conservation effects

• The baseline is suppressed by baryon number conservation

ALICE Collaboration, Phys. Lett. B 807, 10 (2020), 135564

ALICE, Pb-Pb Vs_{NN} = 2.76 TeV

ratio, stat. uncert.

obal consen

syst. uncert.

0.6 < p < 1.5 GeV/c, centrality 0-5%

..... local conserv. ∆ y ___ = 5

local conserv. ∆ y

Ŕ

1.1

• Mean baryon number is given by PYTHIA 8

Baryon number conservation effects

• Rapidity acceptance dependence of $C_2/Skellam$

- C₂/Skellam are below 1-p at |y|>0.1
- PYTHIA 8 do not reproduce measured results
- Observed deviation can not be explained only by baryon number conservation effect

Comparison between p+p and Au+Au collisions at 200 GeV

Comparison between p+p and Au+Au collisions at 200 GeV

Check the possibility of phase transition in high multiplicity events in p+p collisions through the measurements of higher-order cumulants

Comparison between p+p and Au+Au collisions at 200 GeV

- The trends from p+p collisions fit into the centrality dependence of Au+Au collisions
- C_5/C_1 and $C_6/C_2 < 0$ for Au+Au central collisions
- C₅/C₁ and C₆/C₂ > 0 for p+p collisions, while they decrease and show small value at high multiplicity

 Only statistical errors are shown for Au+Au results Au+Au: STAR, Phys.Rev.C 104, 024902 (2021), C₆/C₂: M. S. Abdallah, et.al., Phys. Rev. Lett. 127, 262301 (2021)

LQCD : Phys. Rev. D 101, 074502 (2020)

Summary

Goal of this study:

Precise determination the physics baseline

+ Check the possibility of phase transition in high multiplicity events

in p+p collisions through the measurements of higher-order cumulants

Au+Au 200GeV -> $C_6/C_2 < 0$ Lattice QCD -> $C_6/C_2 < 0$

Signal of the QCD phase transition <u>was not observed</u> for p+p 200GeV collisions.

However, the decreasing trend in high multiplicity events hints the negative C6/C2.

The measurements at higher collision energies or larger colliding system will be important

Backup

• Effect of pileup events

The pileup events are included in the cumulant calculations. In this study, we tried to understand the effect of pileup events by modeling a "pileup-filter" based on the data

Explain the multiplicity distributions with pileup model

We have tried to model a pileup filter to describe the multiplicity distributions for the highest luminosity based on the lowest luminosity

- Lowest luminosity events are divided into two sub-groups
- Two(three) events are randomly picked up from each sub-group with the probability α(β), and they are superimposed
- Parameters $\alpha = 0.89$, $\beta = 0.11$ can explain the highest luminosity

The effect of pileup events on cumulants can be studied by using the pileup filter

Filter on p/pbar

- Once the pileup filter is applied to the number of p/pbar as done for the multiplicity, the value of C_1 is doubled by construction
- On the other hand, such a significant difference is not observed in the data

• The pileup filter is NOT applied to p/pbar.

Data-driven model

- C1 : the "pileup-filtered" data show smaller value than the lowest luminosity's data
- C₂ : Two datas cross and they show the larger deviations than the other orders of cumulants

Data vs Data-driven model

Data and data-driven model are qualitatively consistent in terms of:

- crossing point
- high lumi. < low lumi.
- largest deviation in C₂

Data vs Data-driven model

Data and data-driven model are qualitatively consistent in terms of:

- crossing point
- high lumi. < low lumi.
- largest deviation in C2

For the results up to C_2 ,

Results are consistent between low lumi. and high lumi. after the mean correction for both data & model

Mean Corrected Multiplicity

The pileup effect can be reasonably suppressed by the mean correction even if the pileup events cannot be excluded