Parton energy loss mechanism in Quark-Gluon Plasma with jet quenching using LHC-ALICE data

RIKEN (JRA), Tsukuba University, University Grenoble Alpes Takuya Kumaoka

T.Kumaoka

My work

Main work

- First measurements of the jet nuclear modification factor (R_{AA}^{jet}) and azimuthal anisotropy (v_2^{jet}) within the same condition.
- Developed a toy model simulation which can describe the data results and quantify the parton energy loss parameters.
- Service work for ALICE collaboration
- Evaluate direct photon triggers performance for the FoCal-E detector

Conference

- PANIC2020, online, poster (2020)
- EPS2023, Hamburg, talk (2023)
- QM2023, Houston, poster, (2023)
- HP2024, Nagasaki, poster, (2024)

T.Kumaoka

Outline

- 1. Introduction
- 2. Experimental Setup
- 3. Measurement of the jet nuclear modification factor (R_{AA}^{jet}) and azimuthal anisotropy (v_2^{jet})
- 4. Toy model simulation to quantify the parton energy loss parameters (\hat{e}_n, n)
- 5. Summary and Outlook

Introduction

The Standard Model of Elementary Particle Physics

Standard model describes 3 types of interactions between particles (**strong**, electromagnetic, weak)

Quantum chromodynamics (QCD): _ *strong interactions* → gluons

In the QCD, gluons can couple themselves. → Coupling strength logarithmically changes with energy scale.

Quarks and gluons are confined in hadrons under standard conditions of temperature and pressure .

Quark-Gluon Plasma

Quark-Gluon Plasma (QGP) is a state of matter made of deconfined quarks and gluons

- Predicted by QCD theory
- Formed at high temperature and/or density
- QGP has existed in the *early Universe* ($\approx 10^{-6}$ s after the Big Bang)

T.Kumaoka

The Physics of Heavy Ion Collisions

QGP is produced by **Heavy Ion Collisions (HIC)** with the large collider (<u>LHC/RHIC</u>).

LHC: pp at $\sqrt{s} = 7, 2.76, 5.02, 13, 13.5$ TeV, PbPb at $\sqrt{s_{NN}} = 2.76, 5.02$ TeV

Direct observation of the QGP is mostly impossible because of its tiny size and short life time. \rightarrow Use high-momentum partons (\rightarrow jets) that traverse the QGP medium.

T.Kumaoka

Hard Probes for the QGP

Hard probes: High momentum transfer events (High momentum parton)

- The rates are <u>calculable within perturbative QCD (pQCD)</u>
 →The hard probes, which are measured in the pp collisions, used as <u>the reference</u> for the one measured in the Pb–Pb collisions.
- pp collision: reference A A collision: jet suppression

- Hard probes are created in the <u>initial collision</u> of the <u>same event of the QGP creation</u>
- \rightarrow The experimental signals of the hard probes contains the history of its interaction with the QGP.

What is a jet?

- A parton (quarks or gluons) is fragmented into a hadron collimated shower.
- \rightarrow Detect as a jet of hadrons
- \rightarrow Experimental signatures of quarks or gluons
- p-p measurements match pQCD theoretical predictions

10

ALICE

POWHEG + PYTHIA8

 $p_{\tau}^{ch jet}$ (GeV/c)

T.Kumaoka

MC / DATA

1.5

Physics target: Parton Energy Loss Mechanism Models

Partons deposit energy in the QGP medium within different mechanisms. **Energy loss**

 $\Delta E = \hat{e}_n L^n$ (\hat{e}_n : energy loss per unit path-length, L: path length in the QGP medium)

► Includes QGP properties:

QGP viscosity (η/s), Temperature (T), Coupling constant (α_s)...

Jet suppression mechanisms: (These model suggest different n)

The mechanism have not been clarified yet.

The parameters have not been quantified yet.

Parton Energy Loss Measurement

Two major measurements for the jet quenching

- (1) Nuclear modification factor (R_{AA}^{jet})
- (2) Jet azimuthal anisotropy (v_2^{jet})

Nuclear Modification Factor (R_{AA})

Jet yield of the p-p collision

Use the difference between with and without suppression

- → Sensitive to magnitude of suppression.
- \rightarrow Sensitive \hat{e}_n

Jet azimuthal anisotropy (v_2)

 $V_2^{\text{jet}} \propto N_{\text{in}}^{\text{jet}} - N_{\text{out}}^{\text{jet}} N_{\text{in}}, N_{\text{out}}$: Jet yield in the in-/out-of-plane, respective $\Delta E_{\text{out}} > \Delta E_{\text{in}} = V_2^{\text{jet}} > 0$

Use difference of the path length between in-plane and out-of plane \rightarrow Sensitive *L* dependency of ΔE .

\rightarrow Sensitive the power of n

T.Kumaoka

Current status on the study of the parton energy loss

- LHC-ALICE jet R_{AA} ($\sqrt{s_{NN}} = 2.76$, 5.02 TeV) and v_2 ($\sqrt{s_{NN}} = 2.76$ TeV) $\frac{\text{https://arxiv.org/pd}}{\text{https://doi.org/10.10}}$

https://arxiv.org/pdf/2303.00592.pdf https://doi.org/10.1016/j.nuclphysa.2016.03.006

- LHC-ATLAS jet R_{AA} and v_2 ($\sqrt{s_{NN}} = 2.76, 5.02 \text{ TeV}$)

T.Kumaoka

https://cds.cern.ch/record/2853755/files/ATL-PHYS-PUB-2023-009.pdf https://journals.aps.org/prc/pdf/10.1103/PhysRevC.105.064903

These results indicates the jet suppression and azimuthal anisotropy exist ($R_{AA}^{jet} < 1$, $v_2^{jet} > 0$). \rightarrow However, they do not still clarify the energy loss mechanisms and quantify their parameters.

Previous study of the *n* detemination

For strong constraints on the parton energy loss models depending on the path length, the v_2 and R_{AA} of π^0 measurement using PHENIX $\sqrt{s_{NN}} = 200$ GeV data (2010) were conducted. https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.105.142301

The results indicates the n = 3 model is better than the n = 2 case.

However, a π^0 particle contains <u>only partial information</u> of the original parton.

T.Kumaoka

New points of my study for Energy loss

- First measurements within the same experimental conditions of the charged jet v₂ and R_{AA}
- \rightarrow Expect strong model constraints and acquire accurate suppression parameter values.
 - Develop a toy model simulation of the parton energy loss considering the path-length dependency ($\Delta E \propto \hat{e}_n L^n$).

Experimental Setup

ALICE Detector

- The ALICE detector is desined to study the QGP.
- It is a general detector containing many detectors.
- Roughly categorized three parts
- (1) The central barrel covering the collision point (-0.9 < η < 0.9)
- (2) The muon arm to detect forward-direction muons (-4 < η < 2.5)
- (3) The global detector for selecting collision events

Property Height/Width: 18 m Length: 26 m Weight: 10,000 t

Magnet: 0.5 T

T.Kumaoka

V0 Detector

Two end cap scintillating detector (VOA, VOC), VOM: VOA+VOC

Using NBD-Glauber fit for VOM amplitude, the event centrality is determined

Determine the event plane angle (Ψ_2) using the V0 amplitude distribution for azimuthal angle.

T.Kumaoka

Inner Tracking System / Time Projection Chamber

In this analysis, <u>the only charged tracks were used to reconstruct jets</u>. \rightarrow Detector: Inner Tracking System (ITS) and Time Projection Chamber (TPC) Acceptance: $|\eta| < 0.9, 0 < \phi < 2\pi$

Silicon Pixel Detectors (SPD) Silicon Drift Detectors (SDD) Silicon micro-Strip Detectors (SSD)

Six silicon pixel layers detector

Mixture of Ar (88%) and CO_2 (12%)

Gas chamber detector

T.Kumaoka

Data Set

Data set

- p-p 2018 (Run 2), $\sqrt{s} = 5.02$ TeV, Minimum Bias (MB), 103 × 10⁶ events (doi:10.1103/PhysRevC.105.064903)
- Pb–Pb 2018 (Run 2), $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ (This measurement) **Trigger:** Minimum Bias (MB) + Semi-Central trigger for centrality 30–50% data
 - MB requires simultaneous signals in the VOA, VOC, and ITS detectors.
 - Semi-central trigger is obtained using the V0 detector amplitude.

Event cut

- Primary vertex within |z| < 10 cm.
- Pileup cut: Correlation between the hits in the ITS and TPC.
- \rightarrow 38 × 10⁶ events (centrality 30–50%)

Measurement of the jet nuclear modification factor (R_{AA}) and azimuthal anisotropy (v₂)

T.Kumaoka

Analysis Flow

2024/10/01 Defense @Tsukuba Univ

T.Kumaoka

Two types of the Jet in LHC-ALICE Experiment

There are two kinds of jets in the LHC-ALICE experiment

- (1) Full jet: Includes the energy of the neutral particles (EMCal) and the momentum of the charged tracks (ITS and TPC)
- Includes most particles of the jet.
- Does not covered full azimuthal angle (EMCal reduced acceptance).
- (2) <u>Charged jet</u>: Includes the only charged tracks (ITS and TPC)
- The quality of the charged jets is ensured by previous studies (<u>PHYSICAL REVIEW D 100, 092004 (2019</u>).
- Covered full azimuthal angle
- \rightarrow It is essential for the measurements of the jet azimuthal anisotropy.

24 /50

T.Kumaoka

Jet Reconstruction Methods

Jet reconstruction algorithm

Fast jet package [Phys Lett B 641 (2006) 57]

- <u>Signal Jet→ anti-k_T algorithm</u>
- Background density $\rightarrow k_{\rm T}$ algorithm

Requirements for jet reconstruction

- Jet resolution parameter (R): 0.2
- Track cut: 0.15 < $p_{\rm T}$ < 100 GeV/c
- Leading track cut: > 5.0 GeV/c
- Acceptance: $|\eta| < 0.7$, $0 < \phi < 2\pi$

Raw Charged Jet Spectrum for each Event Plane

Out-Plane jets are more suppressed than in-plane ones for each centrality.

T.Kumaoka

Unfolding Process

The measured jet p_T distribution is affected by the background fluctuations and the finite resolution / efficiency of the detector

 \rightarrow Correcting p_{T} distribution distortions by using the **unfolding** procedure.

Systematic Error Ratio (v2)

 $-\delta_{sys} = \frac{|obs^{com} - obs^{Nomi}|}{obs^{Nomi}}$

- For all p_T range, the systematic error is lower than 1.

The reason of the large error on 80-90 GeV/*c* is the observable value is very small.

Kinds of Systematic Uncertainties

- Detector level p_{T} range in the response matrix ($\pm 5 \text{ GeV}/c$)
- Unfolding iterations (±1)
- Unfolding different prior (Modify input MC simulation)
- Tracking efficiency (98%, 94%)
- Different event plane angle determination detector (VOM, VOA, VOC)
- Different background fitting function (Two type functions)

Jet Yield Distributions

Inclusive charged jet yield for the p-p and Pb-Pb collision

Charged jet yield for the in- and out-of-

T.Kumaoka

Jet Nuclear Modification Factor (R_{AA}^{jet})

- It indicates that there is the value of the R_{AA} is smaller than 1 over all p_T range \rightarrow This indicates the jets suppression due to the parton energy loss.

 My result consistents with the same measurements which already published (using different p-p reference).
 <u>Phys Lett. B 849, (2024) 138412</u>

T.Kumaoka

Inclusive charged jet v_2

This result got the ALICE Preliminary. And it was reported in the EPS2023 and QM2023

- At low p_T , the charged jet v_2 show evidently positive value. As it becomes high p_T , the charged jet v_2 gets closer to zero.
- The charged jet v₂ of this measurement is consistent with ATLAS result within uncertainty around 70-110 GeV/c.

T.Kumaoka

2024/10/01 Defense @Tsukuba Univ

In-plane

Toy model simulation to quantify the parton energy loss parameters (\hat{e}_n , n)

T.Kumaoka

Concept of my parton energy loss simulation

Evaluate the parton energy loss parameters (\hat{e}_n , n) and constrain the models using both the measurements R_{AA}^{jet} and v_2^{jet} .

• Estimate R_{AA}^{jet} and v_2^{jet} by applying the pass length(*L*) using MC simulation and energy loss equation ($\Delta E \propto \hat{e}_n L^n$) to the jet yield in the pp collisions.

2024/10/01 Defense @Tsukuba Univ

T.Kumaoka

Overview of Simulation Algorithm Flow

T.Kumaoka

2024/10/01 Defense @Tsukuba Univ

35/50

Assumption

<1> Do not consider a dependency of the QGP density profile dependency

<3> Do not consider a dependency of parton p_{T} .

<4> Do not consider parton fragmentation in the QGP medium

2 Calculate Hard Scattering Probablity density

T.Kum<u>aoka</u>

2024/10/01 Defense @Tsukuba Univ

37/50

3.1 Calc pass length

The edge corresponds to Wood-Saxon R

Regard the length from a parton creation point to a cross point of the original atom edge as the pass length using two main hypothesis.

- The original nucleus is supposed as a circle.
- The density of QGP is uniform in the overlapping region

38/50

T.Kumaoka

3.2 Energy loss distribution (dE = $\hat{e}_n L^n$)

Disperse histogram (dE distribution)

Estimate the energy loss distribution $(dE = \hat{e}_n L^n)$ using the path length (L) and an arbitrary value \hat{e}_n . The distribution shape depends on the exponent *n*.

T.Kumaoka

4. Calc Energy Loss (d $E = \hat{e}_n L^n$)

- 1. Using the dE distribution, disperse each bin of the pp jet p_T distribution (MC/Fitting function). The dE distribution is normalized by each p_T bin counts.
- 2. Calculate a suppressed jet distribution by summing up distributions comming from each $p_{\rm T}$ bin.
- B. Determine the best \hat{e}_n by fitting the experimental Pb-Pb jet p_T distribution for each n = 1, 2 and 3 value.

 ΔE [GeV]

5. Determine \hat{e}_n

The \hat{e}_n is determined by adjusting the simulation the p_{T} distribution to the p_{T} distribution of the HIC.

T.Kumaoka

Defense @Tsukuba Univ 2024/10/01

41/50

120

O Phys. Rev. D 100, 092004

ALICE p-p $\sqrt{s_{NN}}$ = 5.02 TeV

Charged Jet, Anti- $k_{\rm T} R = 0.2$

 $|\eta_{\rm iet}| < 0.7, p_{\rm T}^{\rm lead \, track} > 5.0 \, {\rm GeV}/c$

6. Make In/Out of plane jet yield distributions

Calculate the in and out of plane distributions using the \hat{e}_n obtained in the previous step.

In the simulation, the event plane angle resolution (\mathcal{R}_2) is 1.

T.Kumaoka

7. Jet R_{AA} and v_2 comparison with the data results

Energy loss: $\Delta E = \hat{e}_n L^n$					
	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 3		
\hat{e}_n [GeV/fm ⁿ]	1.9	0.52	0.14		

 $\chi^{2} = \sum_{i} \frac{(\text{Obs}_{i} - \text{Sim})^{2}}{(\sigma_{\text{data},i})^{2}} / \text{NDF}$

Obs_i :Observation, Sim: Simulation,

 $\sigma_{\text{data},i}$: Measurement Uncertainty

NDF = # of p_T bins – 1 (Free parameter \hat{e}_n) = 5

Significance level 0.05: χ^2 (5) < 11

	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 3
χ^2 ($R_{AA}^{ m jet}$)	0.29	0.31	0.52
χ^2 (v_2^{jet})	2.9	31	72

→ Only n = 1 simulation result is consistent with both R_{AA}^{jet} and v_2^{jet} measurements very well. And energy loss parameter is quaintified as $\hat{e}_1 = 1.9$ GeV/fm!!

T.Kumaoka

Best L dependece Search (mixing model case)

If the energy loss models are mixing, the n has not to be an integer.

 $(n = p_1 \times 1 + p_2 \times 2 + p_3 \times 3)$

X The \hat{e}_n is adjusted for each pass length dependency value of the n exponent.

Just n = 1.00 corresponds to the best value for the exponent in the path length power law dependency for parton energy loss.

44 /50

T.Kumaoka

Central collision comparison

Estimated R_{AA}^{jet} and v_2^{jet} and \hat{e}_n evaluated in the central collision using the exisiting R_{AA}^{jet} measurement.

Centrality 30–50%	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 3
\hat{e}_n [GeV/fm ⁿ]	1.9	0.52	0.14
Centrality 0–10%	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 3
\hat{e}_n [GeV/fm ⁿ]	2.8	0.54	0.11
$\chi^2 (R_{\Lambda\Lambda}^{jet})$	0.29	0.31	0.52

- R_{AA}^{jet} : Every models were consistent with the data. - v_2^{jet} : The central collision values are smaller than the semi-central ones.

 \hat{e}_n was expected not to depoend centrality.

 $\rightarrow \hat{e}_n$ is larger as centrality.

T.Kumaoka

Simulation Conclusion

- For all models (n = 1, 2, and 3), the simulation results of the R_{AA}^{jet} are consistent with the measurement.
- Comparing the v_2^{jet} measurement enable to quantify the exponent *n* = 1.00±0.15.
- When the n = 1, the energy loss unit per path length is $\hat{e}_n = 1.9$ GeV/fm.
- To validate the accuracy of this model, further comparison with other experiments is necessary.

Simulation Outlook

Additional comparison

- \rightarrow Make this toy model simulation more solid.
- \rightarrow Give the dependency of the parton energy loss parameters(\hat{e}_n) to the jet and QGP properties.
 - Compare with the different centrality results -

 - Give the centrality dependence of the energy loss parameters. Enables discussions on the effects of the QGP's density and time evolution.
 - Compare with the different collisional energy measurements.
 - Give the temperature and density dependence of this toy model.
 - Apply my simulation for the results of **other experiments** (LHC-ATLAS, RHIC-sPHENIX). Give the jet p_{T} dependence of the energy loss.
 - Compare with the JETSCAPE results (on going)
 - Give more detail information of the parton interactions.

Summary & Outlook

Summary

- To clarify the parton energy loss mechanism and estimate its parameters, the charged jet R_{AA} and v_2 are measured using the LHC-ALICE data of the Pb–Pb collision at $\sqrt{s_{NN}} = 5.02$ TeV. - The charged jet v_2 in centrality 30-50% show **positive value** and is **consistent with other experiments**.
- Develop a simulation framework for the parton energy loss $dE = \hat{e}_n L^n$ depending path length in the QGP medium
- The comparison between the data and simulation suggests that the $n = 1.00 \pm 0.15$ case is the best and the $\hat{e}_n = 1.9$ GeV/fm.

Outlook

- Publish the charged jet v_2 result.
- Measure a charged jet v_2 result in different centrality bins.
- Update the toy model simulation.