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My work

Main work

- First measurements of the jet nuclear
modification factor (R,,'®') and azimuthal
anisotropy (v,'**) within the same condition.

- Developed a toy model simulation which can
describe the data results and quantify the
parton energy loss parameters.

Service work for ALICE collaboration
- Evaluate direct photon triggers performance for
the FoCal-E detector

Conference

- PANIC2020, online, poster (2020)
- EPS2023, Hamburg, talk (2023)

- QM2023, Houston, poster, (2023)
- HP2024, Nagasaki, poster, (2024)
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1. Introduction

2. Experimental Setup

3. Measurement of the jet nuclear modification factor (R,,'®t) and
azimuthal anisotropy (v,'¢)

4. Toy model simulation to quantify the parton energy loss
parameters (&, n)

5. Summary and Outlook
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The Standard Model of Elementary Particle Physics
Explained by QCD ‘

Standard model describes 3 types of interactions
between particles (strong, electromagnetic, weak)

Quantum chromodynamics (QCD):
strong interactions - gluons

In the QCD, gluons can couple themselves.
— Coupling strength logarithmically changes with
energy scale.

g

Quarks and gluons are confined in
hadrons under standard conditions
of temperature and pressure .
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Quark-Gluon Plasma

Quark-Gluon Plasma (QGP) is a state of matter made of deconfined quarks and gluons

- Predicted by QCD theory
- Formed at high temperature and/or density
- QGP has existed in the early Universe (~ 107° s after the Big Bang)

- 2501 Simordial Quark- (;S-Ium Plasma
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The Physics of Heavy lon Collisions

QGP is produced by Heavy lon Collisions (HIC) with the large collider (LHC/RHIC).

Heavy ion

LHC: pp at+/s = 7,2.76,5.02,13,13.5 TeV,
PbPb at \/syy = 2.76,5.02 TeV

Direct observation of the QGP is mostly impossible because of its tiny size and short life time.

— Use high-momentum partons (- jets) that traverse the QGP medium.
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Hard Probes for the QGP

Hard probes: High momentum transfer events (High momentum parton)

- The rates are calculable within perturbative QCD (pQCD)
—>The hard probes, which are measured in the pp hard probe

A time alp f

collisions, used as the reference for the one measured ¢ ..
in the Pb—Pb collisions.

pp collision: reference A - A collision: jet suppression

-

.. Central region

hard probe
QCD vacuum p:sr;_:f p interact
s/ <] A with QGP
proton Nuclear lagp/ lL‘)

- Hard probes are created in the initial collision of the
same event of the QGP creation

— The experimental signals of the hard probes contains

the history of its interaction with the QGP.
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A parton (quarks or gluons) is

fragmented into a hadron

collimated shower.

— Detect as a jet of hadrons

— Experimental signatures of T o
quarks or gluons d .

IIII'II' llllll

p—p measurements match pQCD
theoretical predictions
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https://journals.aps.org/prd/pdf/10.1103/PhysRevD.100.092004

Physics target: Parton Energy Loss Mechanism Models

Partons deposit energy in the QGP medium within different mechanisms.
Energy loss

AE =

Ln

(é,, : energy loss per unit path-length, L: path length in the QGP medium)

L—> Includes QGP properties:
QGP viscosity (n/s), Temperature (T'), Coupling constant («ay)...

Jet suppression mechanisms: (These model suggest different n)

(

L

/

Parton

\

collision

QGP Medium

\_Collisional (AE < L,n=1) )

—
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The mechanism have not been clarified yet.
The parameters have not been quantified yet.

N ( —— )
Gauge Field (CFT)
radiation /7
, AdS
QGP Medium :
Horizon
\_ Radiative (AE o« L?,n = 2) ) \ AdS/CFT (AE o L°,n = 3) )
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Parton Energy Loss Measurement

7,
Jet/,/ Jet suppression
W'{Parton
<j / Energy deposit: AE = é,L"
Nucleus * QGP M It is impossible to directly measure the energy loss.

—> Measure as the jet suppression
—> Require comparisons
Two major measurements for the jet quenching

(1) Nuclear modification factor (R,

(2) Jet azimuthal anisotropy (v,
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Nuclear Modification Factor (R,,)

pp collision: reference AA collision: jet suppression

/ let )y,
Quark/gluon| — 77

///
QCD vacuu i
/ <:| g/ interact with QGP
<] fl> Nuclear \t $

proton i
aGcp | W

Jet yield of the Pb-Pb collisions

_ scaled as binomial collision
R..Jet =
AA

Jet yield of the p-p collision

Use the difference between with and without suppression
-> Sensitive to magnitude of suppression.
- Sensitive €,
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Jet azimuthal anisotropy (v,)

szet o6 Ninjet -

out In’

A EOUt

>

AE,

N

»|v2jet >0

N_.®t N, N

-ut: Jetyield in the in-/out-of-plane, respectively

Use difference of the path length between in-plane and out-of plane
- Sensitive L dependency of AE.

— Sensitive the power of n
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Current status on the study of the parton energy loss
- LHC-ALICE jet Rpn (+/Snn = 2.76, 5.02 TeV) and v, (\/Syn = 2.76 TeV) Mesleniomrpd/zss.0s5%ed

https://doi.org/10.1016/j.nuclphysa.2016.03.006

- LHC_ATLAS Jet RAA and V2 (m — 276’ 502 TeV) https://cds.cern.ch/record/2853755/files/ATL-PHYS-PUB-2023-009.pdf

https://journals.aps.org/prc/pdf/10.1103/PhysRevC.105.064903
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These results indicates the jet suppression and azimuthal anisotropy exist (R,®t < 1, v,/®t > 0).
— However, they do not still clarify the energy loss mechanisms and quantify their parameters.
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https://cds.cern.ch/record/2853755/files/ATL-PHYS-PUB-2023-009.pdf
https://cds.cern.ch/record/2853755/files/ATL-PHYS-PUB-2023-009.pdf
https://journals.aps.org/prc/pdf/10.1103/PhysRevC.105.064903
https://doi.org/10.1016/j.nuclphysa.2016.03.006
https://arxiv.org/pdf/2303.00592.pdf

Previous study of the n detemination

For strong constraints on the parton energy loss models depending on the path length, the v,
and R,, of T° measurement using PHENIX \/syny = 200 GeV data (2010) were conducted.

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.105.142301
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The results indicates the n = 3 model is better than the n = 2 case.
However, a ¥ particle contains only partial information of the original parton.
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https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.105.142301

New points of my study for Energy loss

- First measurements within the same experimental
conditions of the charged jet v, and R,,

— Expect strong model constraints and acquire

accurate suppression parameter values.

- Develop a toy model simulation of the parton
energy loss considering the path-length
dependency (AE o« e,L").

N

The simulation results matched the data results
very well, and quantified the parton energy loss
parameters!
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0.25

0.15

0.1

0.05

Cooa o oo oo by o o by o o by o n o by gy
LE

This work
Centrality 30-50%

]llllll]llll)'l"dllllll

This work
[ Model (AE « é,L")
[ = n=1,8,=1.9[GeV/fm]
- == n=2, &,=0.52 [GeV/fm?]
- =2 nN=3, &, =IO.14 [ClieV/ft;n:’]

[&7] ALICE Pb-Pb

VSNN = 5.02 TeV
Charged Jet

Anti-kt R=0.2
|’7jet|< 0.7
pieadtrack 5 5.0 GeV/e

-
-
-
.....
bl
-
-
-

— —
. Sues
——
— —
— —

il EFEFETE S BT AT AT AT A

T.Kumaoka 2024/10/01 Defense @ Tsukuba Univ




Experimental Setup
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ALICE Detector

The ALICE detector is desined to study the QGP.

It is a general detector containing many detectors.

Roughly categorized three parts

(1) The central barrel covering the collision point (-0.9 < n < 0.9)
(2) The muon arm to detect forward-direction muons (-4 < n < 2.5)
(3) The global detector for selecting collision events

B Time Projection Chamber

Property
Height/Width: 18 m
Length: 26 m
Weight: 10,000 t

Magnet: 0.5 T
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VO Detector

Two end cap scintillating detector (VOA, VOC), VOM: VOA+VOC

by VZERO-A
o '
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P = — .
! [12- L) - \{‘
ZDC (z = 21126 m) % 1 o,
| REM(z=735m) ‘ T
: 1 =g c \
P - - 1 E— 50 i} /| PSS O
-t [ v 1
) — § 2
xee A |
3
' ) |
e ¢
| " A
I.. r '
| vzERoa vzERo-c 2.8<n<5.1
) ALICE Pb-Pb {5 =5.02TeV
S 107 Data —
. ——— NBD-Glauber fit -
o -
< P XN, + (1N ) N
i) f=0.801,p=46.4,k=15 a
]
o 107 —
10° E =
.0 E — 3
T 15F E
o 1 3

30000 35000

0.5 5000 70000 15000

20000

25000
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37<n<-1.7

Using NBD-Glauber fit for
VOM amplitude, the event
centrality is determined

Determine the event plane

angle () using the VO
amplitude distribution for
azimuthal angle.
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Inner Tracking System / Time Projection Chamber

In this analysis, the only charged tracks were used to reconstruct jets.
— Detector: Inner Tracking System (ITS) and Time Projection Chamber (TPC)

Acceptance: |n]| <0.9,0< ¢ <21
ITS

TPC  ourerriew Reconstructed tracks

CAGE

A\, READOUT WIRE
\\ CHAMBERS

—

87.2 cm

CENTRAL HV
ELECTRODE A INNER FIELD
CAGE

/| ENDPLATE

Silicon Pixel Detectors (SPD) Mixture of Ar (88%) and CO, (12%)

Silicon Drift Detectors (SDD) Gas chamber detector
Silicon micro-Strip Detectors (SSD)

Six silicon pixel layers detector
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Data set

- p-p 2018 (Run 2), /s = 5.02 TeV, Minimum Bias (MB), 103 x 106 events
(doi:10. 1103/PhysRevC.105.064903)

- Pb-Pb 2018 (Run 2), i/syny = 5.02 TeV (This measurement)
Trigger: Minimum Bias (MB) + Semi-Central trigger for centrality 30-50% data
- MB requires simultaneous signals in the VOA, VOC, and ITS detectors.
- Semi-central trigger is obtained using the VO detector amplitude.

Event cut
- Primary vertex within |z| <10 cm.
- Pileup cut: Correlation between the hits in the ITS and TPC.

— 38 x 10° events (centrality 30-50%)
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doi:10.%201103/PhysRevC.105.064903.

Measurement of the jet
nuclear modification factor (R,,)
and azimuthal anisotropy (v,)
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Analysis Flow

:Raw Jet :l Background :' Unfoldmg Result |, Systematic Uncertainty
Rawletinclusive | subtraction | | - p;range
II i
1 Event Plane Angle —pA |i RI.VI — . Jet Ry, ' - Different prior
| I: Raw Jet in- plane—|.|_ —p(P)A H—RML__ 1, v, |, - Tracking efficiency
I Raw Jet out-of-plane —— ()4 —T—RM[ ! - Unfolding iterations
I— —————————— . —BT— II_ — _‘ — _I
Qn vector calibration, g o T T TIT T !

I Embeddmg
| = PYTHIAS8 jets into

- VOM detector I
|
I the Pb-Pb data I
|
|

Energy loss
AE o é, L"

I
| Response Matrix (RM)
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Two types of the Jet in LHC-ALICE Experiment

There are two kinds of jets in the LHC-ALICE experiment

(1) Fulljet: Includes the energy of the neutral particles (EMCal) and
the momentum of the charged tracks (ITS and TPC)

- Includes most particles of the jet.

- Does not covered full azimuthal angle (EMCal reduced acceptance).

(2) Charged jet: Includes the only charged tracks (ITS and TPC)

. . . . . < 1.8¢ '

- The quality of the charged jets is ensured by previous studies © [ PoPb 010% |5,,=502TeV
"7 ALICE Preliminary

(PHYSICAL REVIEW D 100, 092004 (2019) : 1.4~ POWHEG+Pythia8 reference

- Covered full azimuthal angle 12 e e e

. . 5 . g [ R T

— It is essential for the measurements of the jet azimuthal ogl e i

anisotropy. ogl R
0.4::— \L'i'i".*’.! oo
0.2

o 5 100
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https://journals.aps.org/prd/pdf/10.1103/PhysRevD.100.092004

Jet Reconstruction Methods

Jet reconstruction algorithm

Fast jet package [Phys Lett B 641 (2006) 57]
- Signal Jet—> anti-k; algorithm
- Background density=> ky algorithm™ '
Requirements for jet reconstruction \

- Jet resolution parameter (R): 0.2
- Track cut: 0.15 < p; < 100 GeV/c

- Leading track cut: > 5.0 GeV/c
- Acceptance: || <0.7,0< ¢ <21
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Raw Charged Jet Spectrum for each Event Plane

— p(9)A
N\

Background transverse

cCorr _ ..raw __
Corrected Raw jet p; distribution (w/o unfolding): pt = Pr
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Thl

momentum

Out-Plane jets are more suppressed than in-plane ones for each centrality.
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Unfolding Process

The measured jet p; distribution is affected by the background fluctuations and the finite
resolution / efficiency of the detector
— Correcting p; distribution distortions by using the unfolding procedure.

Data (Pb-Pb)
Background e
Detector effect //' RM p%‘rll\]_/[ ) phyb
— T MC
Detector level

Embeddlng Unfolding
Response matrlx o P
Unfoldlng PT,data = RM™ " Dt data
Truth level ‘ MC jet (p-p PYTHIAS)
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Systematic Error Ratio (v2)

@) :
'Ei B systematic error ratio Work in progress
- - Total ALICE Pb-Pb \s,,=5.02 TeV/c
— = Centrality: 30-50%
o -~ VO Detectors _ _
o 0.8— = Background Estiamtion Way Anti-kr, charged jet
- . - R=0.2,In 1<0.7
O - Tracking Efficiency leading track ot
prar - : P; >5 GeV/c
= B Truncation
% 0.6(— e Reweighting Prior
9 -
7)) -
0.4}
0.2
| I;
0 L : :
30 40 50 60 70 80 90 100 110
GeV/c
pT, ch jet [ ]

5 _ |Obscom _ObSNomil
- Ysys — opsNomi

- For all p; range, the systematic
error is lower than 1.

- The reason of the large error on 80-
90 GeV/c is the observable value is
very small.
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Kinds of Systematic Uncertainties

* Detector level p; range in the response matrix (5 GeV/¢)

* Unfolding iterations (+1)

* Unfolding different prior (Modify input MC simulation)

* Tracking efficiency (98%, 94%)

* Different event plane angle determination detector (VOM, VOA, VOC)

e Different background fitting function (Two type functions)
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Jet Yield Distributions

Inclusive charged jet yield for the

0-p and Pb-Pb collision Charged jet yield for the in- and out-of-
5103 = — . planeg
[} = Anti-k, Ch. Particle Jet _,  pp reference -S - -e- In-plane _
= C ge:d0>25 IGT'{;"\I, /<C 0.7 doi:10. 1103/PhysRevC.105.064903 8 = Out-of-plane gﬁ:grslgi_i%_?% — 5.02 TeV/c
104 —e— This work (inclusive) -E i Anti-k;, Ch. Particle Jet
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doi:10.%201103/PhysRevC.105.064903.

Jet Nuclear Modification Factor (R,,®!)

RAA

1 ol ALICE \ISN =5.02 TeV, 30-50% Pb-Pb
- Ch-particle jets, anti-k, R =0.2, |njet| <0.7

0.4
[ ® 1This work
0.2 ) Area-Based, p‘Traf“ > 5 GeV/c
' ) ML-Based
B 7 5, normalization uncertainty
| I | 1 | | | | I | 1 | | | | I | | 1
0 20 40 60 80 100 120

(GeV/c)

Tchjt

- It indicates that there is the value of the R,, is
smaller than 1 over all p; range

— This indicates the jets suppression due to the
parton energy loss.

- My result consistents with the same
measurements which already published (using

different p—p reference).
Phys Lett. B 849, (2024) 138412

T.Kumaoka

2024/10/01 Defense @ Tsukuba Univ


https://www.sciencedirect.com/science/article/pii/S0370269323007451?ref=pdf_download&fr=RR-2&rr=8c4e9fc1fa6a781f

Inclusive charged jet v,

0.2
@ N —| ALICE Preliminary —e— ALICE: |5, = 5.02 TeV, Centrality 30-50%
> -
| Pb-Pb sy =5.02TeV o ALICE: {5 = 2.76 TeV, Centrality 30-50%
~  Anti-k;, Ch. Particle Jet ~ PLB 753 (2016) 511-525
0.15[~ R-o02,11<07 '
C s thv I —m— ATLAS: s, = 5.02 TeV, Centrality 20-40%
- T PRC 105, 064903
0.1 .
Reported in QM2023
0.05
This work
O |
|

Py i [GeV/(]

This result got the ALICE Preliminary.
And it was reported in the EPS2023 and QM2023

_ E 1 Nin( ;t) _Nout( ;t)
4 %2 N jet +N
in(py ) out(

W
/

h jet , jet
5 ()
T)

- At low p-, the charged jet v, show
evidently positive value. As it becomes

high p-, the charged jet v, gets closer to
zero.

- The charged jet v, of this measurement

is consistent with ATLAS result within
uncertainty around 70-110 GeV/c.
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Toy model simulation to
quantify the parton energy
loss parameters (e,,, n)
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Concept of my parton energy loss simulation

Evaluate the parton energy loss parameters (€,,, n) and constrain the models using both the
measurements R,,/¢* and v,

« Estimate R, )®t and v,’°t by applying the pass length(L) using MC simulation and energy loss
equation (AE « e,L") to the jet yield in the pp collisions.

>

\

] inclusive/p-p = Ry

in—out => vl‘*t

el @

1
Compa re with measurements

2

Quantify (e,,, n)!!

jet yield
>
ey
|
Q
>
=

Inclusive

out

MC simulation
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centrality

Overview of Simulation Algorithm Flow
— ‘E;B Centrality 30-50%

1. Determine Centrality

|2. MC for creating a parton using P(rxm, Txy,z)
_BL P(rxy’l, rxy,Z)

%% & 6 0 2 4 6 8 10
x[fm!

AE = éL"
[

o
-
=] o -

" kiaieqoiq

o o o
&,

o © o o
- N W

3. Calc pass length (L
4. Calc Energy Loss (AE = é,L"

7. Estimate jet Raa and v
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<1> Do not consider a dependency of the QGP density profile dependency

<2> Do not consider the time evolution of the QGP medium.
Time evolution

N

<3> Do not consider a dependency of parton p-.

<4> Do not consider parton fragmentation in the QGP medium
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2 Calculate Hard Scattering Probablity density

Calculate the hard scattering probablity  p(r)-

_ Woods-Saxon () — Po
based on the nuclear density distirbution 1+ exp(R
P po =3/ (47R}(1+ )
Pb
I t = 0.55 fm
R=6.8fm
+ "i IJZ r

'E10_ 1 10
= g Centrality 30-50% .0_Q %
53— —o0.8 §
4:— —0.7 ‘ﬁ
y A1 Az 2f —0.6 §
—I—b 03— —0.5 t/
X Txy,1 Txy,2 -2 0.4
-4 0.3 g .
P(Tay,s Tay2) = Pi(Ty1) X Po(Tay 2) T (et Tons The density profile map g
P(ryy 1, Ty 2) 8- This work [l is calculated for each
Xy, ! xy; C . .
o(TayTay2) = =5 ‘ B e I centrality bin 1%.
max X[fm]
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3.1 Calc pass length

The edge corresponds to Wood-Saxon R

103;

Regard the length from a parton creation point to a cross 10;
point of the original atom edge as the pass length using -
This work

two main hypothesis. L
- The original nucleus is supposed as a circle. S B B S S

- The density of QGP is uniform in the overlapping region
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3.2 Energy loss distribution (dE = é,,L")

Disperse histogram (dE distribution)

+— 10" E . . . . .
§ - Th'z W‘sz ) 2| Estimate the energy loss distribution
" Model (AE « e, L" A :
O 0% = 4
- en—i ¢ -1 5 GeV/ fmn] ‘ . (dE=é,L ).usmg the paAth length (L)
[ ®n=2,2,=052[GeV/fm"] R and an arbitrary value é,,.
- 4n=38,¢,=013[GeV/fm"] * = The distribution shape depends on
10°E , A - the exponent n.
103é_ A A ’ u
- o .
1025— A I
E A ‘ = e o
10? s " " o o
- 2 m " - «- " . .
=
El Ll l L1l I | | I Ll 1 I L1l ] Ll I 1 Ll [ Ll l ) - I | -
-200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0

AE [GeV]
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4. Calc Energy Loss (dE=é,, L")

3 b — pp reference 1. Using the dE distribution, disperse each bin of the pp
= \\ — Distorted distribution jet p; distribution (MC/Fitting function). The dE
P distribution is normalized by each p; bin counts.

2. Calculate a suppressed jet distribution by summing
up distributions comming from each p; bin.

3. Determine the best é,, by fitting the experimental Pb-

A

: Pb jet p; distribution for each n =1, 2 and 3 value.
disperse | ___

AE

______ E'F This work :
8. Model (AE x &,L7)
- en=1,4,=1.9[GeV/fm"] o
‘n=2,¢,=0.52[GeV/fm"] N
An=3,¢,=013[GeV/fm"]
. A
Width: é,
Shape: n

T.Kumaoka

o L by b Ll M R TN B
-200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0

AE[GeV]
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5. Determine e,

The é,, is determiend by adjusting the
simulation the p; distribution to the p-
distribution of the HIC.

LI : \
0.9 & % §  This work
oslb & * Model (AE x ¢&,L")
Ef L . ! en=1,¢,=19[GeV/im] /
07f-, , " ! n=2,é,=0.52[GeV/fm?2]
oeb. + % . An=38,6;=0.13[GeV/fm?]
. - A l. 0 -
054 . . \\
= s )
04— 44 o .
-t (- \ /
03— *a " .
02f 1 \ /
— M 1 I
- al
01— # 0 J
1 | | | I 1 I | ]
0

2.5

e, [GeV/fm"]

107°

—_—
o
-

1 IIIIIIII l

O Phys. Rev. D 100, 092004
ALICE p-p /syy =5.02 TeV
Charged Jet, Anti-kr R=0.2
INel<0.7, pieadtrack 5, 5.0 GeV/c

== Tsallis Fitting

[]1This work
ALICE Pb-Pb /syy = 5.02 TeV
Centrality 30-50%
Charged Jet, Anti-k R=0.2

107° INel< 0.7, pieadtrack 5 5.0 GeV/e
10™° = This work

- Model (AE o« é,L")

. en=1,é,=1.9[GeV/im]

- MWMn=2,é,=0.52[GeV/fm?]
107} An=3,é; =0.14[GeV/fm3]

é | | | [ | | | [ | | I 1 | | I | | |

20 40 60 80 100 120
P, [GeV/(c]

T.Kumaoka
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6. Make In/Out of plane jet yield distributions

Calculate the in and out of plane distributions using the é,, obtained in the previous step.

Path length Jetyield (n=1)

(@]
c
—t
_l_<.
count

— In plane
== Qut-of-plane

Yield

® Inplane
m Out-of-plane

10—“E
This work

This work

102

1078

10}

1077

ch jet

ety T 1 Nty = Now(piey| o5
2P =3 N

o
[y+]
N
(o)}

-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
rre b 20 30 40 50 60 70 80 90 100 110 120
8 10 12 14
dL [fm] P, [GeV/d]
jet —|—N jet
(pr) out(p7)

In the simulation, the event plane angle resolution (R,) is 1.
T.Kumaoka
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0.05

- Only n = 1 simulation result is consistent with both R,,** and v,/** measurements very well.

and v, comparison with the data results

IIIIIIIIIII)'I"'I||!III

|

—
=,
(7]
5
=

. Model (AE «< é,L")

== =2, & =0.52 [GeV/fm?]
smmnm n=3, é3 =0.14[GeV/fm3]
| | |

. ] ALICE Pb-Pb
This work S~ = 5.02 TeV
Centrality 30-50% Charged Jet
- Anti-kt R=0.2

—n=1,8,=19[GeV/fm]

| PP EPRTErErS AT ErArE

Injet|< 0.7
piradtrack o, 5.0 GeV/e

—
—
—_—
— —
—_—
—_
— —

' BRI BT AT AT BT

100 110 . 120
p. [GeV/c]

T, ch jet

Energy loss: AE = é,,L"

‘n=1 ‘n:Z ‘n=3
6, [Gev/fm"] {19  [0.52  [0.14
XZ _ Zi(ObSi_Sim)z/NDF

(Jdata,i)2
Obs; :Observation, Sim: Simulation,

Odatai- Measurement Uncertainty
NDF = # of p; bins — 1 (Free parameter é,) =5

Significance level 0.05: x?%(5) < 11

n=1 n=2 n=3
x2 (Ru) [0.29 0.31 0.52
X (v,*) | 2.9 31 72

And energy loss parameter is quaintified as €, = 1.9 GeV/fm!!

T.Kumaoka
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Best L dependece Search (mixing model case)

If the energy loss models are mixing, the n has not to be an integer.

(M= p X1+ p, X2+ p3 X3) N, e
x L This work °
13 12—  Centrality 30-50%
<" This work g
‘ Centrality 30-50% 10><~ b | !
1.0k - acceptable range o
L — L
I gl °
1.1F - . o
| of | :
1~ - ° ¢
: L2 e S — LS S
0.9]- SRR SRSRUUNN . JPUUAP Y SO SO
B 21— i i
: - *‘
08'_ [ |i..|,,.§|.(\|..!.
- l 0—36 08 1 1.2 14 1.6
¥ : n
07'0!8I - 1 - I1.2I I I1!4 ] I1|.6I I 1?8 0
3 (GeV/im"] Just n = 1.00 corresponds to the best value
> The &, is adjusted for each pass length for the exponent in the path length power
dependency value of the n exponent. law dependency for parton energy loss.
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Central collision comparison

[}] B
gN —  Centrality 0-10%
> —
0.2—
N
0.15—<
[ e
- N i
0.1
0.05 ——————
| This work
— Model (AE « ,L7)
0[C_— n=1,¢=28[GeV/ fm]
— == n=2, é,=0.54 [GeV/fm?2]
— «ee= =3, 8 =0.11 [GeV/ fm?]
— = N 1 | ! L " | ! 1 . | L " " ! | 1 !
2 V-9 E™ 1 Phys. Lett. B 849 (2024) 138412 O ——
= 0.8 ALICE Pb-Pb /sy = 5.02 TeV Y =
0.7 Charged Jet, Anti-k; R=0.2

0.6 INel< 0.7, piradtrack 5 5.0 GeV/e

BT

120 140 160

Py o [GEVIE

Estimated R,,®* and v,*' and &, evaluated in the
central colllision using the exisiting R,,/*t measurement.

Centrality 30-50% |n=1 n=2 n=3
é, [GeV/fm"] 1.9 0.52 0.14
Centrality 0-10% |n=1 n=2 n=3
| é, [GeV/fm"] 2.8 0.54 0.11
X2 (Ran®Y) 0.29 0.31 0.52

- R, )%t Every models were consistent with the data.
- v,)®t: The central collision values are smaller than the

semi-central ones.

é,, was expected not to depoend centrality.

- é,, is larger as centrality.

T.Kumaoka
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Simulation Conclusion

- For all models (n =1, 2, and 3), the simulation results of the R,,®* are consistent with the
measurement.

- Comparing the v,/®t measurement enable to quantify the exponent n = 1.00+0.15.
- When the n =1, the energy loss unit per path length is &,, = 1.9 GeV/fm.

- To validate the accuracy of this model, further comparison with other experiments is
necessary.
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Simulation Outlook

Additional comparison
—> Make this toy model simulation more solid.
- Give the dependency of the parton energy loss parameters(é,,) to the jet and QGP properties.

- Compare with the different centrality results

|:> Give the centrality dependence of the energy loss parameters.
Enables discussions on the effects of the QGP's density and time evolution.

- Compare with the different collisional energy measurements.
Give the temperature and density dependence of this toy model.

- Apply my simulation for the results of other experiments ( , RHIC-sPHENIX).
Give the jet p; dependence of the energy loss.

- Compare with the JETSCAPE results (on going)
Give more detail information of the parton interactions.
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Summary & Outlook

Summary

- To clarify the parton energy loss mechanism and estimate its parameters, the charged jet Ry,

and v, are measured using the LHC-ALICE data of the Pb—Pb collision at 1/syy = 5.02 TeV.

- The charged jet v, in centrality 30-50% show positive value and is consistent with other

experiments.

- Develop a simulation framework for the parton energy loss dE = é,,L" depending path length
in the QGP medium

- The comparison between the data and simulation suggests that the n = 1.00+0.15 case is
the best and the e,, = 1.9 GeV/fm.

Outlook

- Publish the charged jet v, result.

- Measure a charged jet v, result in different centrality bins.
- Update the toy model simulation.
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